annotate src/fftw-3.3.3/rdft/simd/common/hc2cfdftv_6.c @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@95 22 /* Generated on Sun Nov 25 07:42:29 EST 2012 */
cannam@95 23
cannam@95 24 #include "codelet-rdft.h"
cannam@95 25
cannam@95 26 #ifdef HAVE_FMA
cannam@95 27
cannam@95 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dit -name hc2cfdftv_6 -include hc2cfv.h */
cannam@95 29
cannam@95 30 /*
cannam@95 31 * This function contains 29 FP additions, 30 FP multiplications,
cannam@95 32 * (or, 17 additions, 18 multiplications, 12 fused multiply/add),
cannam@95 33 * 38 stack variables, 2 constants, and 12 memory accesses
cannam@95 34 */
cannam@95 35 #include "hc2cfv.h"
cannam@95 36
cannam@95 37 static void hc2cfdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 38 {
cannam@95 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@95 40 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@95 41 {
cannam@95 42 INT m;
cannam@95 43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
cannam@95 44 V T5, T6, T3, Tj, T4, T9, Te, Th, T1, T2, Ti, Tc, Td, Tb, Tg;
cannam@95 45 V T7, Ta, Tt, Tk, Tr, T8, Ts, Tf, Tx, Tu, To, Tl, Tw, Tv, Tn;
cannam@95 46 V Tm, Tz, Ty, Tp, Tq;
cannam@95 47 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@95 48 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@95 49 Ti = LDW(&(W[0]));
cannam@95 50 Tc = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@95 51 Td = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@95 52 Tb = LDW(&(W[TWVL * 8]));
cannam@95 53 Tg = LDW(&(W[TWVL * 6]));
cannam@95 54 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@95 55 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@95 56 T3 = VFMACONJ(T2, T1);
cannam@95 57 Tj = VZMULIJ(Ti, VFNMSCONJ(T2, T1));
cannam@95 58 T4 = LDW(&(W[TWVL * 4]));
cannam@95 59 T9 = LDW(&(W[TWVL * 2]));
cannam@95 60 Te = VZMULIJ(Tb, VFNMSCONJ(Td, Tc));
cannam@95 61 Th = VZMULJ(Tg, VFMACONJ(Td, Tc));
cannam@95 62 T7 = VZMULIJ(T4, VFNMSCONJ(T6, T5));
cannam@95 63 Ta = VZMULJ(T9, VFMACONJ(T6, T5));
cannam@95 64 Tt = VADD(Tj, Th);
cannam@95 65 Tk = VSUB(Th, Tj);
cannam@95 66 Tr = VADD(T3, T7);
cannam@95 67 T8 = VSUB(T3, T7);
cannam@95 68 Ts = VADD(Ta, Te);
cannam@95 69 Tf = VSUB(Ta, Te);
cannam@95 70 Tx = VMUL(LDK(KP866025403), VSUB(Tt, Ts));
cannam@95 71 Tu = VADD(Ts, Tt);
cannam@95 72 To = VMUL(LDK(KP866025403), VSUB(Tk, Tf));
cannam@95 73 Tl = VADD(Tf, Tk);
cannam@95 74 Tw = VFNMS(LDK(KP500000000), Tu, Tr);
cannam@95 75 Tv = VCONJ(VMUL(LDK(KP500000000), VADD(Tr, Tu)));
cannam@95 76 Tn = VFNMS(LDK(KP500000000), Tl, T8);
cannam@95 77 Tm = VMUL(LDK(KP500000000), VADD(T8, Tl));
cannam@95 78 Tz = VMUL(LDK(KP500000000), VFMAI(Tx, Tw));
cannam@95 79 Ty = VCONJ(VMUL(LDK(KP500000000), VFNMSI(Tx, Tw)));
cannam@95 80 ST(&(Rm[WS(rs, 2)]), Tv, -ms, &(Rm[0]));
cannam@95 81 Tp = VMUL(LDK(KP500000000), VFNMSI(To, Tn));
cannam@95 82 Tq = VCONJ(VMUL(LDK(KP500000000), VFMAI(To, Tn)));
cannam@95 83 ST(&(Rp[0]), Tm, ms, &(Rp[0]));
cannam@95 84 ST(&(Rp[WS(rs, 1)]), Tz, ms, &(Rp[WS(rs, 1)]));
cannam@95 85 ST(&(Rm[0]), Ty, -ms, &(Rm[0]));
cannam@95 86 ST(&(Rm[WS(rs, 1)]), Tq, -ms, &(Rm[WS(rs, 1)]));
cannam@95 87 ST(&(Rp[WS(rs, 2)]), Tp, ms, &(Rp[0]));
cannam@95 88 }
cannam@95 89 }
cannam@95 90 VLEAVE();
cannam@95 91 }
cannam@95 92
cannam@95 93 static const tw_instr twinstr[] = {
cannam@95 94 VTW(1, 1),
cannam@95 95 VTW(1, 2),
cannam@95 96 VTW(1, 3),
cannam@95 97 VTW(1, 4),
cannam@95 98 VTW(1, 5),
cannam@95 99 {TW_NEXT, VL, 0}
cannam@95 100 };
cannam@95 101
cannam@95 102 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cfdftv_6"), twinstr, &GENUS, {17, 18, 12, 0} };
cannam@95 103
cannam@95 104 void XSIMD(codelet_hc2cfdftv_6) (planner *p) {
cannam@95 105 X(khc2c_register) (p, hc2cfdftv_6, &desc, HC2C_VIA_DFT);
cannam@95 106 }
cannam@95 107 #else /* HAVE_FMA */
cannam@95 108
cannam@95 109 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dit -name hc2cfdftv_6 -include hc2cfv.h */
cannam@95 110
cannam@95 111 /*
cannam@95 112 * This function contains 29 FP additions, 20 FP multiplications,
cannam@95 113 * (or, 27 additions, 18 multiplications, 2 fused multiply/add),
cannam@95 114 * 42 stack variables, 3 constants, and 12 memory accesses
cannam@95 115 */
cannam@95 116 #include "hc2cfv.h"
cannam@95 117
cannam@95 118 static void hc2cfdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 119 {
cannam@95 120 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@95 121 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@95 122 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@95 123 {
cannam@95 124 INT m;
cannam@95 125 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
cannam@95 126 V Ta, Tu, Tn, Tw, Ti, Tv, T1, T8, Tg, Tf, T7, T3, Te, T6, T2;
cannam@95 127 V T4, T9, T5, Tk, Tm, Tj, Tl, Tc, Th, Tb, Td, Tr, Tp, Tq, To;
cannam@95 128 V Tt, Ts, TA, Ty, Tz, Tx, TC, TB;
cannam@95 129 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@95 130 T8 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@95 131 Tg = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@95 132 Te = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@95 133 Tf = VCONJ(Te);
cannam@95 134 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@95 135 T7 = VCONJ(T6);
cannam@95 136 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@95 137 T3 = VCONJ(T2);
cannam@95 138 T4 = VADD(T1, T3);
cannam@95 139 T5 = LDW(&(W[TWVL * 4]));
cannam@95 140 T9 = VZMULIJ(T5, VSUB(T7, T8));
cannam@95 141 Ta = VADD(T4, T9);
cannam@95 142 Tu = VSUB(T4, T9);
cannam@95 143 Tj = LDW(&(W[0]));
cannam@95 144 Tk = VZMULIJ(Tj, VSUB(T3, T1));
cannam@95 145 Tl = LDW(&(W[TWVL * 6]));
cannam@95 146 Tm = VZMULJ(Tl, VADD(Tf, Tg));
cannam@95 147 Tn = VADD(Tk, Tm);
cannam@95 148 Tw = VSUB(Tm, Tk);
cannam@95 149 Tb = LDW(&(W[TWVL * 2]));
cannam@95 150 Tc = VZMULJ(Tb, VADD(T7, T8));
cannam@95 151 Td = LDW(&(W[TWVL * 8]));
cannam@95 152 Th = VZMULIJ(Td, VSUB(Tf, Tg));
cannam@95 153 Ti = VADD(Tc, Th);
cannam@95 154 Tv = VSUB(Tc, Th);
cannam@95 155 Tr = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(Tn, Ti))));
cannam@95 156 To = VADD(Ti, Tn);
cannam@95 157 Tp = VMUL(LDK(KP500000000), VADD(Ta, To));
cannam@95 158 Tq = VFNMS(LDK(KP250000000), To, VMUL(LDK(KP500000000), Ta));
cannam@95 159 ST(&(Rp[0]), Tp, ms, &(Rp[0]));
cannam@95 160 Tt = VCONJ(VADD(Tq, Tr));
cannam@95 161 ST(&(Rm[WS(rs, 1)]), Tt, -ms, &(Rm[WS(rs, 1)]));
cannam@95 162 Ts = VSUB(Tq, Tr);
cannam@95 163 ST(&(Rp[WS(rs, 2)]), Ts, ms, &(Rp[0]));
cannam@95 164 TA = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(Tw, Tv))));
cannam@95 165 Tx = VADD(Tv, Tw);
cannam@95 166 Ty = VCONJ(VMUL(LDK(KP500000000), VADD(Tu, Tx)));
cannam@95 167 Tz = VFNMS(LDK(KP250000000), Tx, VMUL(LDK(KP500000000), Tu));
cannam@95 168 ST(&(Rm[WS(rs, 2)]), Ty, -ms, &(Rm[0]));
cannam@95 169 TC = VADD(Tz, TA);
cannam@95 170 ST(&(Rp[WS(rs, 1)]), TC, ms, &(Rp[WS(rs, 1)]));
cannam@95 171 TB = VCONJ(VSUB(Tz, TA));
cannam@95 172 ST(&(Rm[0]), TB, -ms, &(Rm[0]));
cannam@95 173 }
cannam@95 174 }
cannam@95 175 VLEAVE();
cannam@95 176 }
cannam@95 177
cannam@95 178 static const tw_instr twinstr[] = {
cannam@95 179 VTW(1, 1),
cannam@95 180 VTW(1, 2),
cannam@95 181 VTW(1, 3),
cannam@95 182 VTW(1, 4),
cannam@95 183 VTW(1, 5),
cannam@95 184 {TW_NEXT, VL, 0}
cannam@95 185 };
cannam@95 186
cannam@95 187 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cfdftv_6"), twinstr, &GENUS, {27, 18, 2, 0} };
cannam@95 188
cannam@95 189 void XSIMD(codelet_hc2cfdftv_6) (planner *p) {
cannam@95 190 X(khc2c_register) (p, hc2cfdftv_6, &desc, HC2C_VIA_DFT);
cannam@95 191 }
cannam@95 192 #endif /* HAVE_FMA */