annotate src/fftw-3.3.3/rdft/hc2hc.c @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 #include "hc2hc.h"
cannam@95 22
cannam@95 23 hc2hc_solver *(*X(mksolver_hc2hc_hook))(size_t, INT, hc2hc_mkinferior) = 0;
cannam@95 24
cannam@95 25 typedef struct {
cannam@95 26 plan_rdft super;
cannam@95 27 plan *cld;
cannam@95 28 plan *cldw;
cannam@95 29 INT r;
cannam@95 30 } P;
cannam@95 31
cannam@95 32 static void apply_dit(const plan *ego_, R *I, R *O)
cannam@95 33 {
cannam@95 34 const P *ego = (const P *) ego_;
cannam@95 35 plan_rdft *cld;
cannam@95 36 plan_hc2hc *cldw;
cannam@95 37
cannam@95 38 cld = (plan_rdft *) ego->cld;
cannam@95 39 cld->apply(ego->cld, I, O);
cannam@95 40
cannam@95 41 cldw = (plan_hc2hc *) ego->cldw;
cannam@95 42 cldw->apply(ego->cldw, O);
cannam@95 43 }
cannam@95 44
cannam@95 45 static void apply_dif(const plan *ego_, R *I, R *O)
cannam@95 46 {
cannam@95 47 const P *ego = (const P *) ego_;
cannam@95 48 plan_rdft *cld;
cannam@95 49 plan_hc2hc *cldw;
cannam@95 50
cannam@95 51 cldw = (plan_hc2hc *) ego->cldw;
cannam@95 52 cldw->apply(ego->cldw, I);
cannam@95 53
cannam@95 54 cld = (plan_rdft *) ego->cld;
cannam@95 55 cld->apply(ego->cld, I, O);
cannam@95 56 }
cannam@95 57
cannam@95 58 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@95 59 {
cannam@95 60 P *ego = (P *) ego_;
cannam@95 61 X(plan_awake)(ego->cld, wakefulness);
cannam@95 62 X(plan_awake)(ego->cldw, wakefulness);
cannam@95 63 }
cannam@95 64
cannam@95 65 static void destroy(plan *ego_)
cannam@95 66 {
cannam@95 67 P *ego = (P *) ego_;
cannam@95 68 X(plan_destroy_internal)(ego->cldw);
cannam@95 69 X(plan_destroy_internal)(ego->cld);
cannam@95 70 }
cannam@95 71
cannam@95 72 static void print(const plan *ego_, printer *p)
cannam@95 73 {
cannam@95 74 const P *ego = (const P *) ego_;
cannam@95 75 p->print(p, "(rdft-ct-%s/%D%(%p%)%(%p%))",
cannam@95 76 ego->super.apply == apply_dit ? "dit" : "dif",
cannam@95 77 ego->r, ego->cldw, ego->cld);
cannam@95 78 }
cannam@95 79
cannam@95 80 static int applicable0(const hc2hc_solver *ego, const problem *p_, planner *plnr)
cannam@95 81 {
cannam@95 82 const problem_rdft *p = (const problem_rdft *) p_;
cannam@95 83 INT r;
cannam@95 84
cannam@95 85 return (1
cannam@95 86 && p->sz->rnk == 1
cannam@95 87 && p->vecsz->rnk <= 1
cannam@95 88
cannam@95 89 && (/* either the problem is R2HC, which is solved by DIT */
cannam@95 90 (p->kind[0] == R2HC)
cannam@95 91 ||
cannam@95 92 /* or the problem is HC2R, in which case it is solved
cannam@95 93 by DIF, which destroys the input */
cannam@95 94 (p->kind[0] == HC2R &&
cannam@95 95 (p->I == p->O || !NO_DESTROY_INPUTP(plnr))))
cannam@95 96
cannam@95 97 && ((r = X(choose_radix)(ego->r, p->sz->dims[0].n)) > 0)
cannam@95 98 && p->sz->dims[0].n > r);
cannam@95 99 }
cannam@95 100
cannam@95 101 int X(hc2hc_applicable)(const hc2hc_solver *ego, const problem *p_, planner *plnr)
cannam@95 102 {
cannam@95 103 const problem_rdft *p;
cannam@95 104
cannam@95 105 if (!applicable0(ego, p_, plnr))
cannam@95 106 return 0;
cannam@95 107
cannam@95 108 p = (const problem_rdft *) p_;
cannam@95 109
cannam@95 110 return (0
cannam@95 111 || p->vecsz->rnk == 0
cannam@95 112 || !NO_VRECURSEP(plnr)
cannam@95 113 );
cannam@95 114 }
cannam@95 115
cannam@95 116 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@95 117 {
cannam@95 118 const hc2hc_solver *ego = (const hc2hc_solver *) ego_;
cannam@95 119 const problem_rdft *p;
cannam@95 120 P *pln = 0;
cannam@95 121 plan *cld = 0, *cldw = 0;
cannam@95 122 INT n, r, m, v, ivs, ovs;
cannam@95 123 iodim *d;
cannam@95 124
cannam@95 125 static const plan_adt padt = {
cannam@95 126 X(rdft_solve), awake, print, destroy
cannam@95 127 };
cannam@95 128
cannam@95 129 if (NO_NONTHREADEDP(plnr) || !X(hc2hc_applicable)(ego, p_, plnr))
cannam@95 130 return (plan *) 0;
cannam@95 131
cannam@95 132 p = (const problem_rdft *) p_;
cannam@95 133 d = p->sz->dims;
cannam@95 134 n = d[0].n;
cannam@95 135 r = X(choose_radix)(ego->r, n);
cannam@95 136 m = n / r;
cannam@95 137
cannam@95 138 X(tensor_tornk1)(p->vecsz, &v, &ivs, &ovs);
cannam@95 139
cannam@95 140 switch (p->kind[0]) {
cannam@95 141 case R2HC:
cannam@95 142 cldw = ego->mkcldw(ego,
cannam@95 143 R2HC, r, m, d[0].os, v, ovs, 0, (m+2)/2,
cannam@95 144 p->O, plnr);
cannam@95 145 if (!cldw) goto nada;
cannam@95 146
cannam@95 147 cld = X(mkplan_d)(plnr,
cannam@95 148 X(mkproblem_rdft_d)(
cannam@95 149 X(mktensor_1d)(m, r * d[0].is, d[0].os),
cannam@95 150 X(mktensor_2d)(r, d[0].is, m * d[0].os,
cannam@95 151 v, ivs, ovs),
cannam@95 152 p->I, p->O, p->kind)
cannam@95 153 );
cannam@95 154 if (!cld) goto nada;
cannam@95 155
cannam@95 156 pln = MKPLAN_RDFT(P, &padt, apply_dit);
cannam@95 157 break;
cannam@95 158
cannam@95 159 case HC2R:
cannam@95 160 cldw = ego->mkcldw(ego,
cannam@95 161 HC2R, r, m, d[0].is, v, ivs, 0, (m+2)/2,
cannam@95 162 p->I, plnr);
cannam@95 163 if (!cldw) goto nada;
cannam@95 164
cannam@95 165 cld = X(mkplan_d)(plnr,
cannam@95 166 X(mkproblem_rdft_d)(
cannam@95 167 X(mktensor_1d)(m, d[0].is, r * d[0].os),
cannam@95 168 X(mktensor_2d)(r, m * d[0].is, d[0].os,
cannam@95 169 v, ivs, ovs),
cannam@95 170 p->I, p->O, p->kind)
cannam@95 171 );
cannam@95 172 if (!cld) goto nada;
cannam@95 173
cannam@95 174 pln = MKPLAN_RDFT(P, &padt, apply_dif);
cannam@95 175 break;
cannam@95 176
cannam@95 177 default:
cannam@95 178 A(0);
cannam@95 179 }
cannam@95 180
cannam@95 181 pln->cld = cld;
cannam@95 182 pln->cldw = cldw;
cannam@95 183 pln->r = r;
cannam@95 184 X(ops_add)(&cld->ops, &cldw->ops, &pln->super.super.ops);
cannam@95 185
cannam@95 186 /* inherit could_prune_now_p attribute from cldw */
cannam@95 187 pln->super.super.could_prune_now_p = cldw->could_prune_now_p;
cannam@95 188
cannam@95 189 return &(pln->super.super);
cannam@95 190
cannam@95 191 nada:
cannam@95 192 X(plan_destroy_internal)(cldw);
cannam@95 193 X(plan_destroy_internal)(cld);
cannam@95 194 return (plan *) 0;
cannam@95 195 }
cannam@95 196
cannam@95 197 hc2hc_solver *X(mksolver_hc2hc)(size_t size, INT r, hc2hc_mkinferior mkcldw)
cannam@95 198 {
cannam@95 199 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@95 200 hc2hc_solver *slv = (hc2hc_solver *)X(mksolver)(size, &sadt);
cannam@95 201 slv->r = r;
cannam@95 202 slv->mkcldw = mkcldw;
cannam@95 203 return slv;
cannam@95 204 }
cannam@95 205
cannam@95 206 plan *X(mkplan_hc2hc)(size_t size, const plan_adt *adt, hc2hcapply apply)
cannam@95 207 {
cannam@95 208 plan_hc2hc *ego;
cannam@95 209
cannam@95 210 ego = (plan_hc2hc *) X(mkplan)(size, adt);
cannam@95 211 ego->apply = apply;
cannam@95 212
cannam@95 213 return &(ego->super);
cannam@95 214 }