annotate src/fftw-3.3.3/rdft/dht-rader.c @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 #include "rdft.h"
cannam@95 22
cannam@95 23 /*
cannam@95 24 * Compute DHTs of prime sizes using Rader's trick: turn them
cannam@95 25 * into convolutions of size n - 1, which we then perform via a pair
cannam@95 26 * of FFTs. (We can then do prime real FFTs via rdft-dht.c.)
cannam@95 27 *
cannam@95 28 * Optionally (determined by the "pad" field of the solver), we can
cannam@95 29 * perform the (cyclic) convolution by zero-padding to a size
cannam@95 30 * >= 2*(n-1) - 1. This is advantageous if n-1 has large prime factors.
cannam@95 31 *
cannam@95 32 */
cannam@95 33
cannam@95 34 typedef struct {
cannam@95 35 solver super;
cannam@95 36 int pad;
cannam@95 37 } S;
cannam@95 38
cannam@95 39 typedef struct {
cannam@95 40 plan_rdft super;
cannam@95 41
cannam@95 42 plan *cld1, *cld2;
cannam@95 43 R *omega;
cannam@95 44 INT n, npad, g, ginv;
cannam@95 45 INT is, os;
cannam@95 46 plan *cld_omega;
cannam@95 47 } P;
cannam@95 48
cannam@95 49 static rader_tl *omegas = 0;
cannam@95 50
cannam@95 51 /***************************************************************************/
cannam@95 52
cannam@95 53 /* If R2HC_ONLY_CONV is 1, we use a trick to perform the convolution
cannam@95 54 purely in terms of R2HC transforms, as opposed to R2HC followed by H2RC.
cannam@95 55 This requires a few more operations, but allows us to share the same
cannam@95 56 plan/codelets for both Rader children. */
cannam@95 57 #define R2HC_ONLY_CONV 1
cannam@95 58
cannam@95 59 static void apply(const plan *ego_, R *I, R *O)
cannam@95 60 {
cannam@95 61 const P *ego = (const P *) ego_;
cannam@95 62 INT n = ego->n; /* prime */
cannam@95 63 INT npad = ego->npad; /* == n - 1 for unpadded Rader; always even */
cannam@95 64 INT is = ego->is, os;
cannam@95 65 INT k, gpower, g;
cannam@95 66 R *buf, *omega;
cannam@95 67 R r0;
cannam@95 68
cannam@95 69 buf = (R *) MALLOC(sizeof(R) * npad, BUFFERS);
cannam@95 70
cannam@95 71 /* First, permute the input, storing in buf: */
cannam@95 72 g = ego->g;
cannam@95 73 for (gpower = 1, k = 0; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) {
cannam@95 74 buf[k] = I[gpower * is];
cannam@95 75 }
cannam@95 76 /* gpower == g^(n-1) mod n == 1 */;
cannam@95 77
cannam@95 78 A(n - 1 <= npad);
cannam@95 79 for (k = n - 1; k < npad; ++k) /* optionally, zero-pad convolution */
cannam@95 80 buf[k] = 0;
cannam@95 81
cannam@95 82 os = ego->os;
cannam@95 83
cannam@95 84 /* compute RDFT of buf, storing in buf (i.e., in-place): */
cannam@95 85 {
cannam@95 86 plan_rdft *cld = (plan_rdft *) ego->cld1;
cannam@95 87 cld->apply((plan *) cld, buf, buf);
cannam@95 88 }
cannam@95 89
cannam@95 90 /* set output DC component: */
cannam@95 91 O[0] = (r0 = I[0]) + buf[0];
cannam@95 92
cannam@95 93 /* now, multiply by omega: */
cannam@95 94 omega = ego->omega;
cannam@95 95 buf[0] *= omega[0];
cannam@95 96 for (k = 1; k < npad/2; ++k) {
cannam@95 97 E rB, iB, rW, iW, a, b;
cannam@95 98 rW = omega[k];
cannam@95 99 iW = omega[npad - k];
cannam@95 100 rB = buf[k];
cannam@95 101 iB = buf[npad - k];
cannam@95 102 a = rW * rB - iW * iB;
cannam@95 103 b = rW * iB + iW * rB;
cannam@95 104 #if R2HC_ONLY_CONV
cannam@95 105 buf[k] = a + b;
cannam@95 106 buf[npad - k] = a - b;
cannam@95 107 #else
cannam@95 108 buf[k] = a;
cannam@95 109 buf[npad - k] = b;
cannam@95 110 #endif
cannam@95 111 }
cannam@95 112 /* Nyquist component: */
cannam@95 113 A(k + k == npad); /* since npad is even */
cannam@95 114 buf[k] *= omega[k];
cannam@95 115
cannam@95 116 /* this will add input[0] to all of the outputs after the ifft */
cannam@95 117 buf[0] += r0;
cannam@95 118
cannam@95 119 /* inverse FFT: */
cannam@95 120 {
cannam@95 121 plan_rdft *cld = (plan_rdft *) ego->cld2;
cannam@95 122 cld->apply((plan *) cld, buf, buf);
cannam@95 123 }
cannam@95 124
cannam@95 125 /* do inverse permutation to unshuffle the output: */
cannam@95 126 A(gpower == 1);
cannam@95 127 #if R2HC_ONLY_CONV
cannam@95 128 O[os] = buf[0];
cannam@95 129 gpower = g = ego->ginv;
cannam@95 130 A(npad == n - 1 || npad/2 >= n - 1);
cannam@95 131 if (npad == n - 1) {
cannam@95 132 for (k = 1; k < npad/2; ++k, gpower = MULMOD(gpower, g, n)) {
cannam@95 133 O[gpower * os] = buf[k] + buf[npad - k];
cannam@95 134 }
cannam@95 135 O[gpower * os] = buf[k];
cannam@95 136 ++k, gpower = MULMOD(gpower, g, n);
cannam@95 137 for (; k < npad; ++k, gpower = MULMOD(gpower, g, n)) {
cannam@95 138 O[gpower * os] = buf[npad - k] - buf[k];
cannam@95 139 }
cannam@95 140 }
cannam@95 141 else {
cannam@95 142 for (k = 1; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) {
cannam@95 143 O[gpower * os] = buf[k] + buf[npad - k];
cannam@95 144 }
cannam@95 145 }
cannam@95 146 #else
cannam@95 147 g = ego->ginv;
cannam@95 148 for (k = 0; k < n - 1; ++k, gpower = MULMOD(gpower, g, n)) {
cannam@95 149 O[gpower * os] = buf[k];
cannam@95 150 }
cannam@95 151 #endif
cannam@95 152 A(gpower == 1);
cannam@95 153
cannam@95 154 X(ifree)(buf);
cannam@95 155 }
cannam@95 156
cannam@95 157 static R *mkomega(enum wakefulness wakefulness,
cannam@95 158 plan *p_, INT n, INT npad, INT ginv)
cannam@95 159 {
cannam@95 160 plan_rdft *p = (plan_rdft *) p_;
cannam@95 161 R *omega;
cannam@95 162 INT i, gpower;
cannam@95 163 trigreal scale;
cannam@95 164 triggen *t;
cannam@95 165
cannam@95 166 if ((omega = X(rader_tl_find)(n, npad + 1, ginv, omegas)))
cannam@95 167 return omega;
cannam@95 168
cannam@95 169 omega = (R *)MALLOC(sizeof(R) * npad, TWIDDLES);
cannam@95 170
cannam@95 171 scale = npad; /* normalization for convolution */
cannam@95 172
cannam@95 173 t = X(mktriggen)(wakefulness, n);
cannam@95 174 for (i = 0, gpower = 1; i < n-1; ++i, gpower = MULMOD(gpower, ginv, n)) {
cannam@95 175 trigreal w[2];
cannam@95 176 t->cexpl(t, gpower, w);
cannam@95 177 omega[i] = (w[0] + w[1]) / scale;
cannam@95 178 }
cannam@95 179 X(triggen_destroy)(t);
cannam@95 180 A(gpower == 1);
cannam@95 181
cannam@95 182 A(npad == n - 1 || npad >= 2*(n - 1) - 1);
cannam@95 183
cannam@95 184 for (; i < npad; ++i)
cannam@95 185 omega[i] = K(0.0);
cannam@95 186 if (npad > n - 1)
cannam@95 187 for (i = 1; i < n-1; ++i)
cannam@95 188 omega[npad - i] = omega[n - 1 - i];
cannam@95 189
cannam@95 190 p->apply(p_, omega, omega);
cannam@95 191
cannam@95 192 X(rader_tl_insert)(n, npad + 1, ginv, omega, &omegas);
cannam@95 193 return omega;
cannam@95 194 }
cannam@95 195
cannam@95 196 static void free_omega(R *omega)
cannam@95 197 {
cannam@95 198 X(rader_tl_delete)(omega, &omegas);
cannam@95 199 }
cannam@95 200
cannam@95 201 /***************************************************************************/
cannam@95 202
cannam@95 203 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@95 204 {
cannam@95 205 P *ego = (P *) ego_;
cannam@95 206
cannam@95 207 X(plan_awake)(ego->cld1, wakefulness);
cannam@95 208 X(plan_awake)(ego->cld2, wakefulness);
cannam@95 209 X(plan_awake)(ego->cld_omega, wakefulness);
cannam@95 210
cannam@95 211 switch (wakefulness) {
cannam@95 212 case SLEEPY:
cannam@95 213 free_omega(ego->omega);
cannam@95 214 ego->omega = 0;
cannam@95 215 break;
cannam@95 216 default:
cannam@95 217 ego->g = X(find_generator)(ego->n);
cannam@95 218 ego->ginv = X(power_mod)(ego->g, ego->n - 2, ego->n);
cannam@95 219 A(MULMOD(ego->g, ego->ginv, ego->n) == 1);
cannam@95 220
cannam@95 221 A(!ego->omega);
cannam@95 222 ego->omega = mkomega(wakefulness,
cannam@95 223 ego->cld_omega,ego->n,ego->npad,ego->ginv);
cannam@95 224 break;
cannam@95 225 }
cannam@95 226 }
cannam@95 227
cannam@95 228 static void destroy(plan *ego_)
cannam@95 229 {
cannam@95 230 P *ego = (P *) ego_;
cannam@95 231 X(plan_destroy_internal)(ego->cld_omega);
cannam@95 232 X(plan_destroy_internal)(ego->cld2);
cannam@95 233 X(plan_destroy_internal)(ego->cld1);
cannam@95 234 }
cannam@95 235
cannam@95 236 static void print(const plan *ego_, printer *p)
cannam@95 237 {
cannam@95 238 const P *ego = (const P *) ego_;
cannam@95 239
cannam@95 240 p->print(p, "(dht-rader-%D/%D%ois=%oos=%(%p%)",
cannam@95 241 ego->n, ego->npad, ego->is, ego->os, ego->cld1);
cannam@95 242 if (ego->cld2 != ego->cld1)
cannam@95 243 p->print(p, "%(%p%)", ego->cld2);
cannam@95 244 if (ego->cld_omega != ego->cld1 && ego->cld_omega != ego->cld2)
cannam@95 245 p->print(p, "%(%p%)", ego->cld_omega);
cannam@95 246 p->putchr(p, ')');
cannam@95 247 }
cannam@95 248
cannam@95 249 static int applicable(const solver *ego, const problem *p_, const planner *plnr)
cannam@95 250 {
cannam@95 251 const problem_rdft *p = (const problem_rdft *) p_;
cannam@95 252 UNUSED(ego);
cannam@95 253 return (1
cannam@95 254 && p->sz->rnk == 1
cannam@95 255 && p->vecsz->rnk == 0
cannam@95 256 && p->kind[0] == DHT
cannam@95 257 && X(is_prime)(p->sz->dims[0].n)
cannam@95 258 && p->sz->dims[0].n > 2
cannam@95 259 && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > RADER_MAX_SLOW)
cannam@95 260 /* proclaim the solver SLOW if p-1 is not easily
cannam@95 261 factorizable. Unlike in the complex case where
cannam@95 262 Bluestein can solve the problem, in the DHT case we
cannam@95 263 may have no other choice */
cannam@95 264 && CIMPLIES(NO_SLOWP(plnr), X(factors_into_small_primes)(p->sz->dims[0].n - 1))
cannam@95 265 );
cannam@95 266 }
cannam@95 267
cannam@95 268 static INT choose_transform_size(INT minsz)
cannam@95 269 {
cannam@95 270 static const INT primes[] = { 2, 3, 5, 0 };
cannam@95 271 while (!X(factors_into)(minsz, primes) || minsz % 2)
cannam@95 272 ++minsz;
cannam@95 273 return minsz;
cannam@95 274 }
cannam@95 275
cannam@95 276 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@95 277 {
cannam@95 278 const S *ego = (const S *) ego_;
cannam@95 279 const problem_rdft *p = (const problem_rdft *) p_;
cannam@95 280 P *pln;
cannam@95 281 INT n, npad;
cannam@95 282 INT is, os;
cannam@95 283 plan *cld1 = (plan *) 0;
cannam@95 284 plan *cld2 = (plan *) 0;
cannam@95 285 plan *cld_omega = (plan *) 0;
cannam@95 286 R *buf = (R *) 0;
cannam@95 287 problem *cldp;
cannam@95 288
cannam@95 289 static const plan_adt padt = {
cannam@95 290 X(rdft_solve), awake, print, destroy
cannam@95 291 };
cannam@95 292
cannam@95 293 if (!applicable(ego_, p_, plnr))
cannam@95 294 return (plan *) 0;
cannam@95 295
cannam@95 296 n = p->sz->dims[0].n;
cannam@95 297 is = p->sz->dims[0].is;
cannam@95 298 os = p->sz->dims[0].os;
cannam@95 299
cannam@95 300 if (ego->pad)
cannam@95 301 npad = choose_transform_size(2 * (n - 1) - 1);
cannam@95 302 else
cannam@95 303 npad = n - 1;
cannam@95 304
cannam@95 305 /* initial allocation for the purpose of planning */
cannam@95 306 buf = (R *) MALLOC(sizeof(R) * npad, BUFFERS);
cannam@95 307
cannam@95 308 cld1 = X(mkplan_f_d)(plnr,
cannam@95 309 X(mkproblem_rdft_1_d)(X(mktensor_1d)(npad, 1, 1),
cannam@95 310 X(mktensor_1d)(1, 0, 0),
cannam@95 311 buf, buf,
cannam@95 312 R2HC),
cannam@95 313 NO_SLOW, 0, 0);
cannam@95 314 if (!cld1) goto nada;
cannam@95 315
cannam@95 316 cldp =
cannam@95 317 X(mkproblem_rdft_1_d)(
cannam@95 318 X(mktensor_1d)(npad, 1, 1),
cannam@95 319 X(mktensor_1d)(1, 0, 0),
cannam@95 320 buf, buf,
cannam@95 321 #if R2HC_ONLY_CONV
cannam@95 322 R2HC
cannam@95 323 #else
cannam@95 324 HC2R
cannam@95 325 #endif
cannam@95 326 );
cannam@95 327 if (!(cld2 = X(mkplan_f_d)(plnr, cldp, NO_SLOW, 0, 0)))
cannam@95 328 goto nada;
cannam@95 329
cannam@95 330 /* plan for omega */
cannam@95 331 cld_omega = X(mkplan_f_d)(plnr,
cannam@95 332 X(mkproblem_rdft_1_d)(
cannam@95 333 X(mktensor_1d)(npad, 1, 1),
cannam@95 334 X(mktensor_1d)(1, 0, 0),
cannam@95 335 buf, buf, R2HC),
cannam@95 336 NO_SLOW, ESTIMATE, 0);
cannam@95 337 if (!cld_omega) goto nada;
cannam@95 338
cannam@95 339 /* deallocate buffers; let awake() or apply() allocate them for real */
cannam@95 340 X(ifree)(buf);
cannam@95 341 buf = 0;
cannam@95 342
cannam@95 343 pln = MKPLAN_RDFT(P, &padt, apply);
cannam@95 344 pln->cld1 = cld1;
cannam@95 345 pln->cld2 = cld2;
cannam@95 346 pln->cld_omega = cld_omega;
cannam@95 347 pln->omega = 0;
cannam@95 348 pln->n = n;
cannam@95 349 pln->npad = npad;
cannam@95 350 pln->is = is;
cannam@95 351 pln->os = os;
cannam@95 352
cannam@95 353 X(ops_add)(&cld1->ops, &cld2->ops, &pln->super.super.ops);
cannam@95 354 pln->super.super.ops.other += (npad/2-1)*6 + npad + n + (n-1) * ego->pad;
cannam@95 355 pln->super.super.ops.add += (npad/2-1)*2 + 2 + (n-1) * ego->pad;
cannam@95 356 pln->super.super.ops.mul += (npad/2-1)*4 + 2 + ego->pad;
cannam@95 357 #if R2HC_ONLY_CONV
cannam@95 358 pln->super.super.ops.other += n-2 - ego->pad;
cannam@95 359 pln->super.super.ops.add += (npad/2-1)*2 + (n-2) - ego->pad;
cannam@95 360 #endif
cannam@95 361
cannam@95 362 return &(pln->super.super);
cannam@95 363
cannam@95 364 nada:
cannam@95 365 X(ifree0)(buf);
cannam@95 366 X(plan_destroy_internal)(cld_omega);
cannam@95 367 X(plan_destroy_internal)(cld2);
cannam@95 368 X(plan_destroy_internal)(cld1);
cannam@95 369 return 0;
cannam@95 370 }
cannam@95 371
cannam@95 372 /* constructors */
cannam@95 373
cannam@95 374 static solver *mksolver(int pad)
cannam@95 375 {
cannam@95 376 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
cannam@95 377 S *slv = MKSOLVER(S, &sadt);
cannam@95 378 slv->pad = pad;
cannam@95 379 return &(slv->super);
cannam@95 380 }
cannam@95 381
cannam@95 382 void X(dht_rader_register)(planner *p)
cannam@95 383 {
cannam@95 384 REGISTER_SOLVER(p, mksolver(0));
cannam@95 385 REGISTER_SOLVER(p, mksolver(1));
cannam@95 386 }