annotate src/fftw-3.3.3/libbench2/verify-lib.c @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21
cannam@95 22 #include "verify.h"
cannam@95 23 #include <math.h>
cannam@95 24 #include <stdlib.h>
cannam@95 25 #include <stdio.h>
cannam@95 26
cannam@95 27 /*
cannam@95 28 * Utility functions:
cannam@95 29 */
cannam@95 30 static double dabs(double x) { return (x < 0.0) ? -x : x; }
cannam@95 31 static double dmin(double x, double y) { return (x < y) ? x : y; }
cannam@95 32 static double norm2(double x, double y) { return dmax(dabs(x), dabs(y)); }
cannam@95 33
cannam@95 34 double dmax(double x, double y) { return (x > y) ? x : y; }
cannam@95 35
cannam@95 36 static double aerror(C *a, C *b, int n)
cannam@95 37 {
cannam@95 38 if (n > 0) {
cannam@95 39 /* compute the relative Linf error */
cannam@95 40 double e = 0.0, mag = 0.0;
cannam@95 41 int i;
cannam@95 42
cannam@95 43 for (i = 0; i < n; ++i) {
cannam@95 44 e = dmax(e, norm2(c_re(a[i]) - c_re(b[i]),
cannam@95 45 c_im(a[i]) - c_im(b[i])));
cannam@95 46 mag = dmax(mag,
cannam@95 47 dmin(norm2(c_re(a[i]), c_im(a[i])),
cannam@95 48 norm2(c_re(b[i]), c_im(b[i]))));
cannam@95 49 }
cannam@95 50 e /= mag;
cannam@95 51
cannam@95 52 #ifdef HAVE_ISNAN
cannam@95 53 BENCH_ASSERT(!isnan(e));
cannam@95 54 #endif
cannam@95 55 return e;
cannam@95 56 } else
cannam@95 57 return 0.0;
cannam@95 58 }
cannam@95 59
cannam@95 60 #ifdef HAVE_DRAND48
cannam@95 61 # if defined(HAVE_DECL_DRAND48) && !HAVE_DECL_DRAND48
cannam@95 62 extern double drand48(void);
cannam@95 63 # endif
cannam@95 64 double mydrand(void)
cannam@95 65 {
cannam@95 66 return drand48() - 0.5;
cannam@95 67 }
cannam@95 68 #else
cannam@95 69 double mydrand(void)
cannam@95 70 {
cannam@95 71 double d = rand();
cannam@95 72 return (d / (double) RAND_MAX) - 0.5;
cannam@95 73 }
cannam@95 74 #endif
cannam@95 75
cannam@95 76 void arand(C *a, int n)
cannam@95 77 {
cannam@95 78 int i;
cannam@95 79
cannam@95 80 /* generate random inputs */
cannam@95 81 for (i = 0; i < n; ++i) {
cannam@95 82 c_re(a[i]) = mydrand();
cannam@95 83 c_im(a[i]) = mydrand();
cannam@95 84 }
cannam@95 85 }
cannam@95 86
cannam@95 87 /* make array real */
cannam@95 88 void mkreal(C *A, int n)
cannam@95 89 {
cannam@95 90 int i;
cannam@95 91
cannam@95 92 for (i = 0; i < n; ++i) {
cannam@95 93 c_im(A[i]) = 0.0;
cannam@95 94 }
cannam@95 95 }
cannam@95 96
cannam@95 97 static void assign_conj(C *Ac, C *A, int rank, const bench_iodim *dim, int stride)
cannam@95 98 {
cannam@95 99 if (rank == 0) {
cannam@95 100 c_re(*Ac) = c_re(*A);
cannam@95 101 c_im(*Ac) = -c_im(*A);
cannam@95 102 }
cannam@95 103 else {
cannam@95 104 int i, n0 = dim[rank - 1].n, s = stride;
cannam@95 105 rank -= 1;
cannam@95 106 stride *= n0;
cannam@95 107 assign_conj(Ac, A, rank, dim, stride);
cannam@95 108 for (i = 1; i < n0; ++i)
cannam@95 109 assign_conj(Ac + (n0 - i) * s, A + i * s, rank, dim, stride);
cannam@95 110 }
cannam@95 111 }
cannam@95 112
cannam@95 113 /* make array hermitian */
cannam@95 114 void mkhermitian(C *A, int rank, const bench_iodim *dim, int stride)
cannam@95 115 {
cannam@95 116 if (rank == 0)
cannam@95 117 c_im(*A) = 0.0;
cannam@95 118 else {
cannam@95 119 int i, n0 = dim[rank - 1].n, s = stride;
cannam@95 120 rank -= 1;
cannam@95 121 stride *= n0;
cannam@95 122 mkhermitian(A, rank, dim, stride);
cannam@95 123 for (i = 1; 2*i < n0; ++i)
cannam@95 124 assign_conj(A + (n0 - i) * s, A + i * s, rank, dim, stride);
cannam@95 125 if (2*i == n0)
cannam@95 126 mkhermitian(A + i * s, rank, dim, stride);
cannam@95 127 }
cannam@95 128 }
cannam@95 129
cannam@95 130 void mkhermitian1(C *a, int n)
cannam@95 131 {
cannam@95 132 bench_iodim d;
cannam@95 133
cannam@95 134 d.n = n;
cannam@95 135 d.is = d.os = 1;
cannam@95 136 mkhermitian(a, 1, &d, 1);
cannam@95 137 }
cannam@95 138
cannam@95 139 /* C = A */
cannam@95 140 void acopy(C *c, C *a, int n)
cannam@95 141 {
cannam@95 142 int i;
cannam@95 143
cannam@95 144 for (i = 0; i < n; ++i) {
cannam@95 145 c_re(c[i]) = c_re(a[i]);
cannam@95 146 c_im(c[i]) = c_im(a[i]);
cannam@95 147 }
cannam@95 148 }
cannam@95 149
cannam@95 150 /* C = A + B */
cannam@95 151 void aadd(C *c, C *a, C *b, int n)
cannam@95 152 {
cannam@95 153 int i;
cannam@95 154
cannam@95 155 for (i = 0; i < n; ++i) {
cannam@95 156 c_re(c[i]) = c_re(a[i]) + c_re(b[i]);
cannam@95 157 c_im(c[i]) = c_im(a[i]) + c_im(b[i]);
cannam@95 158 }
cannam@95 159 }
cannam@95 160
cannam@95 161 /* C = A - B */
cannam@95 162 void asub(C *c, C *a, C *b, int n)
cannam@95 163 {
cannam@95 164 int i;
cannam@95 165
cannam@95 166 for (i = 0; i < n; ++i) {
cannam@95 167 c_re(c[i]) = c_re(a[i]) - c_re(b[i]);
cannam@95 168 c_im(c[i]) = c_im(a[i]) - c_im(b[i]);
cannam@95 169 }
cannam@95 170 }
cannam@95 171
cannam@95 172 /* B = rotate left A (complex) */
cannam@95 173 void arol(C *b, C *a, int n, int nb, int na)
cannam@95 174 {
cannam@95 175 int i, ib, ia;
cannam@95 176
cannam@95 177 for (ib = 0; ib < nb; ++ib) {
cannam@95 178 for (i = 0; i < n - 1; ++i)
cannam@95 179 for (ia = 0; ia < na; ++ia) {
cannam@95 180 C *pb = b + (ib * n + i) * na + ia;
cannam@95 181 C *pa = a + (ib * n + i + 1) * na + ia;
cannam@95 182 c_re(*pb) = c_re(*pa);
cannam@95 183 c_im(*pb) = c_im(*pa);
cannam@95 184 }
cannam@95 185
cannam@95 186 for (ia = 0; ia < na; ++ia) {
cannam@95 187 C *pb = b + (ib * n + n - 1) * na + ia;
cannam@95 188 C *pa = a + ib * n * na + ia;
cannam@95 189 c_re(*pb) = c_re(*pa);
cannam@95 190 c_im(*pb) = c_im(*pa);
cannam@95 191 }
cannam@95 192 }
cannam@95 193 }
cannam@95 194
cannam@95 195 void aphase_shift(C *b, C *a, int n, int nb, int na, double sign)
cannam@95 196 {
cannam@95 197 int j, jb, ja;
cannam@95 198 trigreal twopin;
cannam@95 199 twopin = K2PI / n;
cannam@95 200
cannam@95 201 for (jb = 0; jb < nb; ++jb)
cannam@95 202 for (j = 0; j < n; ++j) {
cannam@95 203 trigreal s = sign * SIN(j * twopin);
cannam@95 204 trigreal c = COS(j * twopin);
cannam@95 205
cannam@95 206 for (ja = 0; ja < na; ++ja) {
cannam@95 207 int k = (jb * n + j) * na + ja;
cannam@95 208 c_re(b[k]) = c_re(a[k]) * c - c_im(a[k]) * s;
cannam@95 209 c_im(b[k]) = c_re(a[k]) * s + c_im(a[k]) * c;
cannam@95 210 }
cannam@95 211 }
cannam@95 212 }
cannam@95 213
cannam@95 214 /* A = alpha * A (complex, in place) */
cannam@95 215 void ascale(C *a, C alpha, int n)
cannam@95 216 {
cannam@95 217 int i;
cannam@95 218
cannam@95 219 for (i = 0; i < n; ++i) {
cannam@95 220 R xr = c_re(a[i]), xi = c_im(a[i]);
cannam@95 221 c_re(a[i]) = xr * c_re(alpha) - xi * c_im(alpha);
cannam@95 222 c_im(a[i]) = xr * c_im(alpha) + xi * c_re(alpha);
cannam@95 223 }
cannam@95 224 }
cannam@95 225
cannam@95 226
cannam@95 227 double acmp(C *a, C *b, int n, const char *test, double tol)
cannam@95 228 {
cannam@95 229 double d = aerror(a, b, n);
cannam@95 230 if (d > tol) {
cannam@95 231 ovtpvt_err("Found relative error %e (%s)\n", d, test);
cannam@95 232
cannam@95 233 {
cannam@95 234 int i, N;
cannam@95 235 N = n > 300 && verbose <= 2 ? 300 : n;
cannam@95 236 for (i = 0; i < N; ++i)
cannam@95 237 ovtpvt_err("%8d %16.12f %16.12f %16.12f %16.12f\n", i,
cannam@95 238 (double) c_re(a[i]), (double) c_im(a[i]),
cannam@95 239 (double) c_re(b[i]), (double) c_im(b[i]));
cannam@95 240 }
cannam@95 241
cannam@95 242 bench_exit(EXIT_FAILURE);
cannam@95 243 }
cannam@95 244 return d;
cannam@95 245 }
cannam@95 246
cannam@95 247
cannam@95 248 /*
cannam@95 249 * Implementation of the FFT tester described in
cannam@95 250 *
cannam@95 251 * Funda Ergün. Testing multivariate linear functions: Overcoming the
cannam@95 252 * generator bottleneck. In Proceedings of the Twenty-Seventh Annual
cannam@95 253 * ACM Symposium on the Theory of Computing, pages 407-416, Las Vegas,
cannam@95 254 * Nevada, 29 May--1 June 1995.
cannam@95 255 *
cannam@95 256 * Also: F. Ergun, S. R. Kumar, and D. Sivakumar, "Self-testing without
cannam@95 257 * the generator bottleneck," SIAM J. on Computing 29 (5), 1630-51 (2000).
cannam@95 258 */
cannam@95 259
cannam@95 260 static double impulse0(dofft_closure *k,
cannam@95 261 int n, int vecn,
cannam@95 262 C *inA, C *inB, C *inC,
cannam@95 263 C *outA, C *outB, C *outC,
cannam@95 264 C *tmp, int rounds, double tol)
cannam@95 265 {
cannam@95 266 int N = n * vecn;
cannam@95 267 double e = 0.0;
cannam@95 268 int j;
cannam@95 269
cannam@95 270 k->apply(k, inA, tmp);
cannam@95 271 e = dmax(e, acmp(tmp, outA, N, "impulse 1", tol));
cannam@95 272
cannam@95 273 for (j = 0; j < rounds; ++j) {
cannam@95 274 arand(inB, N);
cannam@95 275 asub(inC, inA, inB, N);
cannam@95 276 k->apply(k, inB, outB);
cannam@95 277 k->apply(k, inC, outC);
cannam@95 278 aadd(tmp, outB, outC, N);
cannam@95 279 e = dmax(e, acmp(tmp, outA, N, "impulse", tol));
cannam@95 280 }
cannam@95 281 return e;
cannam@95 282 }
cannam@95 283
cannam@95 284 double impulse(dofft_closure *k,
cannam@95 285 int n, int vecn,
cannam@95 286 C *inA, C *inB, C *inC,
cannam@95 287 C *outA, C *outB, C *outC,
cannam@95 288 C *tmp, int rounds, double tol)
cannam@95 289 {
cannam@95 290 int i, j;
cannam@95 291 double e = 0.0;
cannam@95 292
cannam@95 293 /* check impulsive input */
cannam@95 294 for (i = 0; i < vecn; ++i) {
cannam@95 295 R x = (sqrt(n)*(i+1)) / (double)(vecn+1);
cannam@95 296 for (j = 0; j < n; ++j) {
cannam@95 297 c_re(inA[j + i * n]) = 0;
cannam@95 298 c_im(inA[j + i * n]) = 0;
cannam@95 299 c_re(outA[j + i * n]) = x;
cannam@95 300 c_im(outA[j + i * n]) = 0;
cannam@95 301 }
cannam@95 302 c_re(inA[i * n]) = x;
cannam@95 303 c_im(inA[i * n]) = 0;
cannam@95 304 }
cannam@95 305
cannam@95 306 e = dmax(e, impulse0(k, n, vecn, inA, inB, inC, outA, outB, outC,
cannam@95 307 tmp, rounds, tol));
cannam@95 308
cannam@95 309 /* check constant input */
cannam@95 310 for (i = 0; i < vecn; ++i) {
cannam@95 311 R x = (i+1) / ((double)(vecn+1) * sqrt(n));
cannam@95 312 for (j = 0; j < n; ++j) {
cannam@95 313 c_re(inA[j + i * n]) = x;
cannam@95 314 c_im(inA[j + i * n]) = 0;
cannam@95 315 c_re(outA[j + i * n]) = 0;
cannam@95 316 c_im(outA[j + i * n]) = 0;
cannam@95 317 }
cannam@95 318 c_re(outA[i * n]) = n * x;
cannam@95 319 c_im(outA[i * n]) = 0;
cannam@95 320 }
cannam@95 321
cannam@95 322 e = dmax(e, impulse0(k, n, vecn, inA, inB, inC, outA, outB, outC,
cannam@95 323 tmp, rounds, tol));
cannam@95 324 return e;
cannam@95 325 }
cannam@95 326
cannam@95 327 double linear(dofft_closure *k, int realp,
cannam@95 328 int n, C *inA, C *inB, C *inC, C *outA,
cannam@95 329 C *outB, C *outC, C *tmp, int rounds, double tol)
cannam@95 330 {
cannam@95 331 int j;
cannam@95 332 double e = 0.0;
cannam@95 333
cannam@95 334 for (j = 0; j < rounds; ++j) {
cannam@95 335 C alpha, beta;
cannam@95 336 c_re(alpha) = mydrand();
cannam@95 337 c_im(alpha) = realp ? 0.0 : mydrand();
cannam@95 338 c_re(beta) = mydrand();
cannam@95 339 c_im(beta) = realp ? 0.0 : mydrand();
cannam@95 340 arand(inA, n);
cannam@95 341 arand(inB, n);
cannam@95 342 k->apply(k, inA, outA);
cannam@95 343 k->apply(k, inB, outB);
cannam@95 344
cannam@95 345 ascale(outA, alpha, n);
cannam@95 346 ascale(outB, beta, n);
cannam@95 347 aadd(tmp, outA, outB, n);
cannam@95 348 ascale(inA, alpha, n);
cannam@95 349 ascale(inB, beta, n);
cannam@95 350 aadd(inC, inA, inB, n);
cannam@95 351 k->apply(k, inC, outC);
cannam@95 352
cannam@95 353 e = dmax(e, acmp(outC, tmp, n, "linear", tol));
cannam@95 354 }
cannam@95 355 return e;
cannam@95 356 }
cannam@95 357
cannam@95 358
cannam@95 359
cannam@95 360 double tf_shift(dofft_closure *k,
cannam@95 361 int realp, const bench_tensor *sz,
cannam@95 362 int n, int vecn, double sign,
cannam@95 363 C *inA, C *inB, C *outA, C *outB, C *tmp,
cannam@95 364 int rounds, double tol, int which_shift)
cannam@95 365 {
cannam@95 366 int nb, na, dim, N = n * vecn;
cannam@95 367 int i, j;
cannam@95 368 double e = 0.0;
cannam@95 369
cannam@95 370 /* test 3: check the time-shift property */
cannam@95 371 /* the paper performs more tests, but this code should be fine too */
cannam@95 372
cannam@95 373 nb = 1;
cannam@95 374 na = n;
cannam@95 375
cannam@95 376 /* check shifts across all SZ dimensions */
cannam@95 377 for (dim = 0; dim < sz->rnk; ++dim) {
cannam@95 378 int ncur = sz->dims[dim].n;
cannam@95 379
cannam@95 380 na /= ncur;
cannam@95 381
cannam@95 382 for (j = 0; j < rounds; ++j) {
cannam@95 383 arand(inA, N);
cannam@95 384
cannam@95 385 if (which_shift == TIME_SHIFT) {
cannam@95 386 for (i = 0; i < vecn; ++i) {
cannam@95 387 if (realp) mkreal(inA + i * n, n);
cannam@95 388 arol(inB + i * n, inA + i * n, ncur, nb, na);
cannam@95 389 }
cannam@95 390 k->apply(k, inA, outA);
cannam@95 391 k->apply(k, inB, outB);
cannam@95 392 for (i = 0; i < vecn; ++i)
cannam@95 393 aphase_shift(tmp + i * n, outB + i * n, ncur,
cannam@95 394 nb, na, sign);
cannam@95 395 e = dmax(e, acmp(tmp, outA, N, "time shift", tol));
cannam@95 396 } else {
cannam@95 397 for (i = 0; i < vecn; ++i) {
cannam@95 398 if (realp)
cannam@95 399 mkhermitian(inA + i * n, sz->rnk, sz->dims, 1);
cannam@95 400 aphase_shift(inB + i * n, inA + i * n, ncur,
cannam@95 401 nb, na, -sign);
cannam@95 402 }
cannam@95 403 k->apply(k, inA, outA);
cannam@95 404 k->apply(k, inB, outB);
cannam@95 405 for (i = 0; i < vecn; ++i)
cannam@95 406 arol(tmp + i * n, outB + i * n, ncur, nb, na);
cannam@95 407 e = dmax(e, acmp(tmp, outA, N, "freq shift", tol));
cannam@95 408 }
cannam@95 409 }
cannam@95 410
cannam@95 411 nb *= ncur;
cannam@95 412 }
cannam@95 413 return e;
cannam@95 414 }
cannam@95 415
cannam@95 416
cannam@95 417 void preserves_input(dofft_closure *k, aconstrain constrain,
cannam@95 418 int n, C *inA, C *inB, C *outB, int rounds)
cannam@95 419 {
cannam@95 420 int j;
cannam@95 421 int recopy_input = k->recopy_input;
cannam@95 422
cannam@95 423 k->recopy_input = 1;
cannam@95 424 for (j = 0; j < rounds; ++j) {
cannam@95 425 arand(inA, n);
cannam@95 426 if (constrain)
cannam@95 427 constrain(inA, n);
cannam@95 428
cannam@95 429 acopy(inB, inA, n);
cannam@95 430 k->apply(k, inB, outB);
cannam@95 431 acmp(inB, inA, n, "preserves_input", 0.0);
cannam@95 432 }
cannam@95 433 k->recopy_input = recopy_input;
cannam@95 434 }
cannam@95 435
cannam@95 436
cannam@95 437 /* Make a copy of the size tensor, with the same dimensions, but with
cannam@95 438 the strides corresponding to a "packed" row-major array with the
cannam@95 439 given stride. */
cannam@95 440 bench_tensor *verify_pack(const bench_tensor *sz, int s)
cannam@95 441 {
cannam@95 442 bench_tensor *x = tensor_copy(sz);
cannam@95 443 if (FINITE_RNK(x->rnk) && x->rnk > 0) {
cannam@95 444 int i;
cannam@95 445 x->dims[x->rnk - 1].is = s;
cannam@95 446 x->dims[x->rnk - 1].os = s;
cannam@95 447 for (i = x->rnk - 1; i > 0; --i) {
cannam@95 448 x->dims[i - 1].is = x->dims[i].is * x->dims[i].n;
cannam@95 449 x->dims[i - 1].os = x->dims[i].os * x->dims[i].n;
cannam@95 450 }
cannam@95 451 }
cannam@95 452 return x;
cannam@95 453 }
cannam@95 454
cannam@95 455 static int all_zero(C *a, int n)
cannam@95 456 {
cannam@95 457 int i;
cannam@95 458 for (i = 0; i < n; ++i)
cannam@95 459 if (c_re(a[i]) != 0.0 || c_im(a[i]) != 0.0)
cannam@95 460 return 0;
cannam@95 461 return 1;
cannam@95 462 }
cannam@95 463
cannam@95 464 static int one_accuracy_test(dofft_closure *k, aconstrain constrain,
cannam@95 465 int sign, int n, C *a, C *b,
cannam@95 466 double t[6])
cannam@95 467 {
cannam@95 468 double err[6];
cannam@95 469
cannam@95 470 if (constrain)
cannam@95 471 constrain(a, n);
cannam@95 472
cannam@95 473 if (all_zero(a, n))
cannam@95 474 return 0;
cannam@95 475
cannam@95 476 k->apply(k, a, b);
cannam@95 477 fftaccuracy(n, a, b, sign, err);
cannam@95 478
cannam@95 479 t[0] += err[0];
cannam@95 480 t[1] += err[1] * err[1];
cannam@95 481 t[2] = dmax(t[2], err[2]);
cannam@95 482 t[3] += err[3];
cannam@95 483 t[4] += err[4] * err[4];
cannam@95 484 t[5] = dmax(t[5], err[5]);
cannam@95 485
cannam@95 486 return 1;
cannam@95 487 }
cannam@95 488
cannam@95 489 void accuracy_test(dofft_closure *k, aconstrain constrain,
cannam@95 490 int sign, int n, C *a, C *b, int rounds, int impulse_rounds,
cannam@95 491 double t[6])
cannam@95 492 {
cannam@95 493 int r, i;
cannam@95 494 int ntests = 0;
cannam@95 495 bench_complex czero = {0, 0};
cannam@95 496
cannam@95 497 for (i = 0; i < 6; ++i) t[i] = 0.0;
cannam@95 498
cannam@95 499 for (r = 0; r < rounds; ++r) {
cannam@95 500 arand(a, n);
cannam@95 501 if (one_accuracy_test(k, constrain, sign, n, a, b, t))
cannam@95 502 ++ntests;
cannam@95 503 }
cannam@95 504
cannam@95 505 /* impulses at beginning of array */
cannam@95 506 for (r = 0; r < impulse_rounds; ++r) {
cannam@95 507 if (r > n - r - 1)
cannam@95 508 continue;
cannam@95 509
cannam@95 510 caset(a, n, czero);
cannam@95 511 c_re(a[r]) = c_im(a[r]) = 1.0;
cannam@95 512
cannam@95 513 if (one_accuracy_test(k, constrain, sign, n, a, b, t))
cannam@95 514 ++ntests;
cannam@95 515 }
cannam@95 516
cannam@95 517 /* impulses at end of array */
cannam@95 518 for (r = 0; r < impulse_rounds; ++r) {
cannam@95 519 if (r <= n - r - 1)
cannam@95 520 continue;
cannam@95 521
cannam@95 522 caset(a, n, czero);
cannam@95 523 c_re(a[n - r - 1]) = c_im(a[n - r - 1]) = 1.0;
cannam@95 524
cannam@95 525 if (one_accuracy_test(k, constrain, sign, n, a, b, t))
cannam@95 526 ++ntests;
cannam@95 527 }
cannam@95 528
cannam@95 529 /* randomly-located impulses */
cannam@95 530 for (r = 0; r < impulse_rounds; ++r) {
cannam@95 531 caset(a, n, czero);
cannam@95 532 i = rand() % n;
cannam@95 533 c_re(a[i]) = c_im(a[i]) = 1.0;
cannam@95 534
cannam@95 535 if (one_accuracy_test(k, constrain, sign, n, a, b, t))
cannam@95 536 ++ntests;
cannam@95 537 }
cannam@95 538
cannam@95 539 t[0] /= ntests;
cannam@95 540 t[1] = sqrt(t[1] / ntests);
cannam@95 541 t[3] /= ntests;
cannam@95 542 t[4] = sqrt(t[4] / ntests);
cannam@95 543
cannam@95 544 fftaccuracy_done();
cannam@95 545 }