cannam@95
|
1 <html lang="en">
|
cannam@95
|
2 <head>
|
cannam@95
|
3 <title>MPI Plan Creation - FFTW 3.3.3</title>
|
cannam@95
|
4 <meta http-equiv="Content-Type" content="text/html">
|
cannam@95
|
5 <meta name="description" content="FFTW 3.3.3">
|
cannam@95
|
6 <meta name="generator" content="makeinfo 4.13">
|
cannam@95
|
7 <link title="Top" rel="start" href="index.html#Top">
|
cannam@95
|
8 <link rel="up" href="FFTW-MPI-Reference.html#FFTW-MPI-Reference" title="FFTW MPI Reference">
|
cannam@95
|
9 <link rel="prev" href="MPI-Data-Distribution-Functions.html#MPI-Data-Distribution-Functions" title="MPI Data Distribution Functions">
|
cannam@95
|
10 <link rel="next" href="MPI-Wisdom-Communication.html#MPI-Wisdom-Communication" title="MPI Wisdom Communication">
|
cannam@95
|
11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
|
cannam@95
|
12 <!--
|
cannam@95
|
13 This manual is for FFTW
|
cannam@95
|
14 (version 3.3.3, 25 November 2012).
|
cannam@95
|
15
|
cannam@95
|
16 Copyright (C) 2003 Matteo Frigo.
|
cannam@95
|
17
|
cannam@95
|
18 Copyright (C) 2003 Massachusetts Institute of Technology.
|
cannam@95
|
19
|
cannam@95
|
20 Permission is granted to make and distribute verbatim copies of
|
cannam@95
|
21 this manual provided the copyright notice and this permission
|
cannam@95
|
22 notice are preserved on all copies.
|
cannam@95
|
23
|
cannam@95
|
24 Permission is granted to copy and distribute modified versions of
|
cannam@95
|
25 this manual under the conditions for verbatim copying, provided
|
cannam@95
|
26 that the entire resulting derived work is distributed under the
|
cannam@95
|
27 terms of a permission notice identical to this one.
|
cannam@95
|
28
|
cannam@95
|
29 Permission is granted to copy and distribute translations of this
|
cannam@95
|
30 manual into another language, under the above conditions for
|
cannam@95
|
31 modified versions, except that this permission notice may be
|
cannam@95
|
32 stated in a translation approved by the Free Software Foundation.
|
cannam@95
|
33 -->
|
cannam@95
|
34 <meta http-equiv="Content-Style-Type" content="text/css">
|
cannam@95
|
35 <style type="text/css"><!--
|
cannam@95
|
36 pre.display { font-family:inherit }
|
cannam@95
|
37 pre.format { font-family:inherit }
|
cannam@95
|
38 pre.smalldisplay { font-family:inherit; font-size:smaller }
|
cannam@95
|
39 pre.smallformat { font-family:inherit; font-size:smaller }
|
cannam@95
|
40 pre.smallexample { font-size:smaller }
|
cannam@95
|
41 pre.smalllisp { font-size:smaller }
|
cannam@95
|
42 span.sc { font-variant:small-caps }
|
cannam@95
|
43 span.roman { font-family:serif; font-weight:normal; }
|
cannam@95
|
44 span.sansserif { font-family:sans-serif; font-weight:normal; }
|
cannam@95
|
45 --></style>
|
cannam@95
|
46 </head>
|
cannam@95
|
47 <body>
|
cannam@95
|
48 <div class="node">
|
cannam@95
|
49 <a name="MPI-Plan-Creation"></a>
|
cannam@95
|
50 <p>
|
cannam@95
|
51 Next: <a rel="next" accesskey="n" href="MPI-Wisdom-Communication.html#MPI-Wisdom-Communication">MPI Wisdom Communication</a>,
|
cannam@95
|
52 Previous: <a rel="previous" accesskey="p" href="MPI-Data-Distribution-Functions.html#MPI-Data-Distribution-Functions">MPI Data Distribution Functions</a>,
|
cannam@95
|
53 Up: <a rel="up" accesskey="u" href="FFTW-MPI-Reference.html#FFTW-MPI-Reference">FFTW MPI Reference</a>
|
cannam@95
|
54 <hr>
|
cannam@95
|
55 </div>
|
cannam@95
|
56
|
cannam@95
|
57 <h4 class="subsection">6.12.5 MPI Plan Creation</h4>
|
cannam@95
|
58
|
cannam@95
|
59 <h5 class="subsubheading">Complex-data MPI DFTs</h5>
|
cannam@95
|
60
|
cannam@95
|
61 <p>Plans for complex-data DFTs (see <a href="2d-MPI-example.html#g_t2d-MPI-example">2d MPI example</a>) are created by:
|
cannam@95
|
62
|
cannam@95
|
63 <p><a name="index-fftw_005fmpi_005fplan_005fdft_005f1d-461"></a><a name="index-fftw_005fmpi_005fplan_005fdft_005f2d-462"></a><a name="index-fftw_005fmpi_005fplan_005fdft_005f3d-463"></a><a name="index-fftw_005fmpi_005fplan_005fdft-464"></a><a name="index-fftw_005fmpi_005fplan_005fmany_005fdft-465"></a>
|
cannam@95
|
64 <pre class="example"> fftw_plan fftw_mpi_plan_dft_1d(ptrdiff_t n0, fftw_complex *in, fftw_complex *out,
|
cannam@95
|
65 MPI_Comm comm, int sign, unsigned flags);
|
cannam@95
|
66 fftw_plan fftw_mpi_plan_dft_2d(ptrdiff_t n0, ptrdiff_t n1,
|
cannam@95
|
67 fftw_complex *in, fftw_complex *out,
|
cannam@95
|
68 MPI_Comm comm, int sign, unsigned flags);
|
cannam@95
|
69 fftw_plan fftw_mpi_plan_dft_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2,
|
cannam@95
|
70 fftw_complex *in, fftw_complex *out,
|
cannam@95
|
71 MPI_Comm comm, int sign, unsigned flags);
|
cannam@95
|
72 fftw_plan fftw_mpi_plan_dft(int rnk, const ptrdiff_t *n,
|
cannam@95
|
73 fftw_complex *in, fftw_complex *out,
|
cannam@95
|
74 MPI_Comm comm, int sign, unsigned flags);
|
cannam@95
|
75 fftw_plan fftw_mpi_plan_many_dft(int rnk, const ptrdiff_t *n,
|
cannam@95
|
76 ptrdiff_t howmany, ptrdiff_t block, ptrdiff_t tblock,
|
cannam@95
|
77 fftw_complex *in, fftw_complex *out,
|
cannam@95
|
78 MPI_Comm comm, int sign, unsigned flags);
|
cannam@95
|
79 </pre>
|
cannam@95
|
80 <p><a name="index-MPI-communicator-466"></a><a name="index-collective-function-467"></a>These are similar to their serial counterparts (see <a href="Complex-DFTs.html#Complex-DFTs">Complex DFTs</a>)
|
cannam@95
|
81 in specifying the dimensions, sign, and flags of the transform. The
|
cannam@95
|
82 <code>comm</code> argument gives an MPI communicator that specifies the set
|
cannam@95
|
83 of processes to participate in the transform; plan creation is a
|
cannam@95
|
84 collective function that must be called for all processes in the
|
cannam@95
|
85 communicator. The <code>in</code> and <code>out</code> pointers refer only to a
|
cannam@95
|
86 portion of the overall transform data (see <a href="MPI-Data-Distribution.html#MPI-Data-Distribution">MPI Data Distribution</a>)
|
cannam@95
|
87 as specified by the ‘<samp><span class="samp">local_size</span></samp>’ functions in the previous
|
cannam@95
|
88 section. Unless <code>flags</code> contains <code>FFTW_ESTIMATE</code>, these
|
cannam@95
|
89 arrays are overwritten during plan creation as for the serial
|
cannam@95
|
90 interface. For multi-dimensional transforms, any dimensions <code>>
|
cannam@95
|
91 1</code> are supported; for one-dimensional transforms, only composite
|
cannam@95
|
92 (non-prime) <code>n0</code> are currently supported (unlike the serial
|
cannam@95
|
93 FFTW). Requesting an unsupported transform size will yield a
|
cannam@95
|
94 <code>NULL</code> plan. (As in the serial interface, highly composite sizes
|
cannam@95
|
95 generally yield the best performance.)
|
cannam@95
|
96
|
cannam@95
|
97 <p><a name="index-advanced-interface-468"></a><a name="index-FFTW_005fMPI_005fDEFAULT_005fBLOCK-469"></a><a name="index-stride-470"></a>The advanced-interface <code>fftw_mpi_plan_many_dft</code> additionally
|
cannam@95
|
98 allows you to specify the block sizes for the first dimension
|
cannam@95
|
99 (<code>block</code>) of the n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × n<sub>d-1</sub> input data and the first dimension
|
cannam@95
|
100 (<code>tblock</code>) of the n<sub>1</sub> × n<sub>0</sub> × n<sub>2</sub> ×…× n<sub>d-1</sub> transposed data (at intermediate
|
cannam@95
|
101 steps of the transform, and for the output if
|
cannam@95
|
102 <code>FFTW_TRANSPOSED_OUT</code> is specified in <code>flags</code>). These must
|
cannam@95
|
103 be the same block sizes as were passed to the corresponding
|
cannam@95
|
104 ‘<samp><span class="samp">local_size</span></samp>’ function; you can pass <code>FFTW_MPI_DEFAULT_BLOCK</code>
|
cannam@95
|
105 to use FFTW's default block size as in the basic interface. Also, the
|
cannam@95
|
106 <code>howmany</code> parameter specifies that the transform is of contiguous
|
cannam@95
|
107 <code>howmany</code>-tuples rather than individual complex numbers; this
|
cannam@95
|
108 corresponds to the same parameter in the serial advanced interface
|
cannam@95
|
109 (see <a href="Advanced-Complex-DFTs.html#Advanced-Complex-DFTs">Advanced Complex DFTs</a>) with <code>stride = howmany</code> and
|
cannam@95
|
110 <code>dist = 1</code>.
|
cannam@95
|
111
|
cannam@95
|
112 <h5 class="subsubheading">MPI flags</h5>
|
cannam@95
|
113
|
cannam@95
|
114 <p>The <code>flags</code> can be any of those for the serial FFTW
|
cannam@95
|
115 (see <a href="Planner-Flags.html#Planner-Flags">Planner Flags</a>), and in addition may include one or more of
|
cannam@95
|
116 the following MPI-specific flags, which improve performance at the
|
cannam@95
|
117 cost of changing the output or input data formats.
|
cannam@95
|
118
|
cannam@95
|
119 <ul>
|
cannam@95
|
120 <li><a name="index-FFTW_005fMPI_005fSCRAMBLED_005fOUT-471"></a><a name="index-FFTW_005fMPI_005fSCRAMBLED_005fIN-472"></a><code>FFTW_MPI_SCRAMBLED_OUT</code>, <code>FFTW_MPI_SCRAMBLED_IN</code>: valid for
|
cannam@95
|
121 1d transforms only, these flags indicate that the output/input of the
|
cannam@95
|
122 transform are in an undocumented “scrambled” order. A forward
|
cannam@95
|
123 <code>FFTW_MPI_SCRAMBLED_OUT</code> transform can be inverted by a backward
|
cannam@95
|
124 <code>FFTW_MPI_SCRAMBLED_IN</code> (times the usual 1/<i>N</i> normalization).
|
cannam@95
|
125 See <a href="One_002ddimensional-distributions.html#One_002ddimensional-distributions">One-dimensional distributions</a>.
|
cannam@95
|
126
|
cannam@95
|
127 <li><a name="index-FFTW_005fMPI_005fTRANSPOSED_005fOUT-473"></a><a name="index-FFTW_005fMPI_005fTRANSPOSED_005fIN-474"></a><code>FFTW_MPI_TRANSPOSED_OUT</code>, <code>FFTW_MPI_TRANSPOSED_IN</code>: valid
|
cannam@95
|
128 for multidimensional (<code>rnk > 1</code>) transforms only, these flags
|
cannam@95
|
129 specify that the output or input of an n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × n<sub>d-1</sub> transform is
|
cannam@95
|
130 transposed to n<sub>1</sub> × n<sub>0</sub> × n<sub>2</sub> ×…× n<sub>d-1</sub>. See <a href="Transposed-distributions.html#Transposed-distributions">Transposed distributions</a>.
|
cannam@95
|
131
|
cannam@95
|
132 </ul>
|
cannam@95
|
133
|
cannam@95
|
134 <h5 class="subsubheading">Real-data MPI DFTs</h5>
|
cannam@95
|
135
|
cannam@95
|
136 <p><a name="index-r2c-475"></a>Plans for real-input/output (r2c/c2r) DFTs (see <a href="Multi_002ddimensional-MPI-DFTs-of-Real-Data.html#Multi_002ddimensional-MPI-DFTs-of-Real-Data">Multi-dimensional MPI DFTs of Real Data</a>) are created by:
|
cannam@95
|
137
|
cannam@95
|
138 <p><a name="index-fftw_005fmpi_005fplan_005fdft_005fr2c_005f2d-476"></a><a name="index-fftw_005fmpi_005fplan_005fdft_005fr2c_005f2d-477"></a><a name="index-fftw_005fmpi_005fplan_005fdft_005fr2c_005f3d-478"></a><a name="index-fftw_005fmpi_005fplan_005fdft_005fr2c-479"></a><a name="index-fftw_005fmpi_005fplan_005fdft_005fc2r_005f2d-480"></a><a name="index-fftw_005fmpi_005fplan_005fdft_005fc2r_005f2d-481"></a><a name="index-fftw_005fmpi_005fplan_005fdft_005fc2r_005f3d-482"></a><a name="index-fftw_005fmpi_005fplan_005fdft_005fc2r-483"></a>
|
cannam@95
|
139 <pre class="example"> fftw_plan fftw_mpi_plan_dft_r2c_2d(ptrdiff_t n0, ptrdiff_t n1,
|
cannam@95
|
140 double *in, fftw_complex *out,
|
cannam@95
|
141 MPI_Comm comm, unsigned flags);
|
cannam@95
|
142 fftw_plan fftw_mpi_plan_dft_r2c_2d(ptrdiff_t n0, ptrdiff_t n1,
|
cannam@95
|
143 double *in, fftw_complex *out,
|
cannam@95
|
144 MPI_Comm comm, unsigned flags);
|
cannam@95
|
145 fftw_plan fftw_mpi_plan_dft_r2c_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2,
|
cannam@95
|
146 double *in, fftw_complex *out,
|
cannam@95
|
147 MPI_Comm comm, unsigned flags);
|
cannam@95
|
148 fftw_plan fftw_mpi_plan_dft_r2c(int rnk, const ptrdiff_t *n,
|
cannam@95
|
149 double *in, fftw_complex *out,
|
cannam@95
|
150 MPI_Comm comm, unsigned flags);
|
cannam@95
|
151 fftw_plan fftw_mpi_plan_dft_c2r_2d(ptrdiff_t n0, ptrdiff_t n1,
|
cannam@95
|
152 fftw_complex *in, double *out,
|
cannam@95
|
153 MPI_Comm comm, unsigned flags);
|
cannam@95
|
154 fftw_plan fftw_mpi_plan_dft_c2r_2d(ptrdiff_t n0, ptrdiff_t n1,
|
cannam@95
|
155 fftw_complex *in, double *out,
|
cannam@95
|
156 MPI_Comm comm, unsigned flags);
|
cannam@95
|
157 fftw_plan fftw_mpi_plan_dft_c2r_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2,
|
cannam@95
|
158 fftw_complex *in, double *out,
|
cannam@95
|
159 MPI_Comm comm, unsigned flags);
|
cannam@95
|
160 fftw_plan fftw_mpi_plan_dft_c2r(int rnk, const ptrdiff_t *n,
|
cannam@95
|
161 fftw_complex *in, double *out,
|
cannam@95
|
162 MPI_Comm comm, unsigned flags);
|
cannam@95
|
163 </pre>
|
cannam@95
|
164 <p>Similar to the serial interface (see <a href="Real_002ddata-DFTs.html#Real_002ddata-DFTs">Real-data DFTs</a>), these
|
cannam@95
|
165 transform logically n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × n<sub>d-1</sub> real data to/from n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × (n<sub>d-1</sub>/2 + 1) complex
|
cannam@95
|
166 data, representing the non-redundant half of the conjugate-symmetry
|
cannam@95
|
167 output of a real-input DFT (see <a href="Multi_002ddimensional-Transforms.html#Multi_002ddimensional-Transforms">Multi-dimensional Transforms</a>).
|
cannam@95
|
168 However, the real array must be stored within a padded n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × [2 (n<sub>d-1</sub>/2 + 1)]
|
cannam@95
|
169
|
cannam@95
|
170 <p>array (much like the in-place serial r2c transforms, but here for
|
cannam@95
|
171 out-of-place transforms as well). Currently, only multi-dimensional
|
cannam@95
|
172 (<code>rnk > 1</code>) r2c/c2r transforms are supported (requesting a plan
|
cannam@95
|
173 for <code>rnk = 1</code> will yield <code>NULL</code>). As explained above
|
cannam@95
|
174 (see <a href="Multi_002ddimensional-MPI-DFTs-of-Real-Data.html#Multi_002ddimensional-MPI-DFTs-of-Real-Data">Multi-dimensional MPI DFTs of Real Data</a>), the data
|
cannam@95
|
175 distribution of both the real and complex arrays is given by the
|
cannam@95
|
176 ‘<samp><span class="samp">local_size</span></samp>’ function called for the dimensions of the
|
cannam@95
|
177 <em>complex</em> array. Similar to the other planning functions, the
|
cannam@95
|
178 input and output arrays are overwritten when the plan is created
|
cannam@95
|
179 except in <code>FFTW_ESTIMATE</code> mode.
|
cannam@95
|
180
|
cannam@95
|
181 <p>As for the complex DFTs above, there is an advance interface that
|
cannam@95
|
182 allows you to manually specify block sizes and to transform contiguous
|
cannam@95
|
183 <code>howmany</code>-tuples of real/complex numbers:
|
cannam@95
|
184
|
cannam@95
|
185 <p><a name="index-fftw_005fmpi_005fplan_005fmany_005fdft_005fr2c-484"></a><a name="index-fftw_005fmpi_005fplan_005fmany_005fdft_005fc2r-485"></a>
|
cannam@95
|
186 <pre class="example"> fftw_plan fftw_mpi_plan_many_dft_r2c
|
cannam@95
|
187 (int rnk, const ptrdiff_t *n, ptrdiff_t howmany,
|
cannam@95
|
188 ptrdiff_t iblock, ptrdiff_t oblock,
|
cannam@95
|
189 double *in, fftw_complex *out,
|
cannam@95
|
190 MPI_Comm comm, unsigned flags);
|
cannam@95
|
191 fftw_plan fftw_mpi_plan_many_dft_c2r
|
cannam@95
|
192 (int rnk, const ptrdiff_t *n, ptrdiff_t howmany,
|
cannam@95
|
193 ptrdiff_t iblock, ptrdiff_t oblock,
|
cannam@95
|
194 fftw_complex *in, double *out,
|
cannam@95
|
195 MPI_Comm comm, unsigned flags);
|
cannam@95
|
196 </pre>
|
cannam@95
|
197 <h5 class="subsubheading">MPI r2r transforms</h5>
|
cannam@95
|
198
|
cannam@95
|
199 <p><a name="index-r2r-486"></a>There are corresponding plan-creation routines for r2r
|
cannam@95
|
200 transforms (see <a href="More-DFTs-of-Real-Data.html#More-DFTs-of-Real-Data">More DFTs of Real Data</a>), currently supporting
|
cannam@95
|
201 multidimensional (<code>rnk > 1</code>) transforms only (<code>rnk = 1</code> will
|
cannam@95
|
202 yield a <code>NULL</code> plan):
|
cannam@95
|
203
|
cannam@95
|
204 <pre class="example"> fftw_plan fftw_mpi_plan_r2r_2d(ptrdiff_t n0, ptrdiff_t n1,
|
cannam@95
|
205 double *in, double *out,
|
cannam@95
|
206 MPI_Comm comm,
|
cannam@95
|
207 fftw_r2r_kind kind0, fftw_r2r_kind kind1,
|
cannam@95
|
208 unsigned flags);
|
cannam@95
|
209 fftw_plan fftw_mpi_plan_r2r_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2,
|
cannam@95
|
210 double *in, double *out,
|
cannam@95
|
211 MPI_Comm comm,
|
cannam@95
|
212 fftw_r2r_kind kind0, fftw_r2r_kind kind1, fftw_r2r_kind kind2,
|
cannam@95
|
213 unsigned flags);
|
cannam@95
|
214 fftw_plan fftw_mpi_plan_r2r(int rnk, const ptrdiff_t *n,
|
cannam@95
|
215 double *in, double *out,
|
cannam@95
|
216 MPI_Comm comm, const fftw_r2r_kind *kind,
|
cannam@95
|
217 unsigned flags);
|
cannam@95
|
218 fftw_plan fftw_mpi_plan_many_r2r(int rnk, const ptrdiff_t *n,
|
cannam@95
|
219 ptrdiff_t iblock, ptrdiff_t oblock,
|
cannam@95
|
220 double *in, double *out,
|
cannam@95
|
221 MPI_Comm comm, const fftw_r2r_kind *kind,
|
cannam@95
|
222 unsigned flags);
|
cannam@95
|
223 </pre>
|
cannam@95
|
224 <p>The parameters are much the same as for the complex DFTs above, except
|
cannam@95
|
225 that the arrays are of real numbers (and hence the outputs of the
|
cannam@95
|
226 ‘<samp><span class="samp">local_size</span></samp>’ data-distribution functions should be interpreted as
|
cannam@95
|
227 counts of real rather than complex numbers). Also, the <code>kind</code>
|
cannam@95
|
228 parameters specify the r2r kinds along each dimension as for the
|
cannam@95
|
229 serial interface (see <a href="Real_002dto_002dReal-Transform-Kinds.html#Real_002dto_002dReal-Transform-Kinds">Real-to-Real Transform Kinds</a>). See <a href="Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms.html#Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms">Other Multi-dimensional Real-data MPI Transforms</a>.
|
cannam@95
|
230
|
cannam@95
|
231 <h5 class="subsubheading">MPI transposition</h5>
|
cannam@95
|
232
|
cannam@95
|
233 <p><a name="index-transpose-487"></a>
|
cannam@95
|
234 FFTW also provides routines to plan a transpose of a distributed
|
cannam@95
|
235 <code>n0</code> by <code>n1</code> array of real numbers, or an array of
|
cannam@95
|
236 <code>howmany</code>-tuples of real numbers with specified block sizes
|
cannam@95
|
237 (see <a href="FFTW-MPI-Transposes.html#FFTW-MPI-Transposes">FFTW MPI Transposes</a>):
|
cannam@95
|
238
|
cannam@95
|
239 <p><a name="index-fftw_005fmpi_005fplan_005ftranspose-488"></a><a name="index-fftw_005fmpi_005fplan_005fmany_005ftranspose-489"></a>
|
cannam@95
|
240 <pre class="example"> fftw_plan fftw_mpi_plan_transpose(ptrdiff_t n0, ptrdiff_t n1,
|
cannam@95
|
241 double *in, double *out,
|
cannam@95
|
242 MPI_Comm comm, unsigned flags);
|
cannam@95
|
243 fftw_plan fftw_mpi_plan_many_transpose
|
cannam@95
|
244 (ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t howmany,
|
cannam@95
|
245 ptrdiff_t block0, ptrdiff_t block1,
|
cannam@95
|
246 double *in, double *out, MPI_Comm comm, unsigned flags);
|
cannam@95
|
247 </pre>
|
cannam@95
|
248 <p><a name="index-new_002darray-execution-490"></a><a name="index-fftw_005fmpi_005fexecute_005fr2r-491"></a>These plans are used with the <code>fftw_mpi_execute_r2r</code> new-array
|
cannam@95
|
249 execute function (see <a href="Using-MPI-Plans.html#Using-MPI-Plans">Using MPI Plans</a>), since they count as (rank
|
cannam@95
|
250 zero) r2r plans from FFTW's perspective.
|
cannam@95
|
251
|
cannam@95
|
252 </body></html>
|
cannam@95
|
253
|