cannam@95
|
1 <html lang="en">
|
cannam@95
|
2 <head>
|
cannam@95
|
3 <title>FFTW MPI Fortran Interface - FFTW 3.3.3</title>
|
cannam@95
|
4 <meta http-equiv="Content-Type" content="text/html">
|
cannam@95
|
5 <meta name="description" content="FFTW 3.3.3">
|
cannam@95
|
6 <meta name="generator" content="makeinfo 4.13">
|
cannam@95
|
7 <link title="Top" rel="start" href="index.html#Top">
|
cannam@95
|
8 <link rel="up" href="Distributed_002dmemory-FFTW-with-MPI.html#Distributed_002dmemory-FFTW-with-MPI" title="Distributed-memory FFTW with MPI">
|
cannam@95
|
9 <link rel="prev" href="FFTW-MPI-Reference.html#FFTW-MPI-Reference" title="FFTW MPI Reference">
|
cannam@95
|
10 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
|
cannam@95
|
11 <!--
|
cannam@95
|
12 This manual is for FFTW
|
cannam@95
|
13 (version 3.3.3, 25 November 2012).
|
cannam@95
|
14
|
cannam@95
|
15 Copyright (C) 2003 Matteo Frigo.
|
cannam@95
|
16
|
cannam@95
|
17 Copyright (C) 2003 Massachusetts Institute of Technology.
|
cannam@95
|
18
|
cannam@95
|
19 Permission is granted to make and distribute verbatim copies of
|
cannam@95
|
20 this manual provided the copyright notice and this permission
|
cannam@95
|
21 notice are preserved on all copies.
|
cannam@95
|
22
|
cannam@95
|
23 Permission is granted to copy and distribute modified versions of
|
cannam@95
|
24 this manual under the conditions for verbatim copying, provided
|
cannam@95
|
25 that the entire resulting derived work is distributed under the
|
cannam@95
|
26 terms of a permission notice identical to this one.
|
cannam@95
|
27
|
cannam@95
|
28 Permission is granted to copy and distribute translations of this
|
cannam@95
|
29 manual into another language, under the above conditions for
|
cannam@95
|
30 modified versions, except that this permission notice may be
|
cannam@95
|
31 stated in a translation approved by the Free Software Foundation.
|
cannam@95
|
32 -->
|
cannam@95
|
33 <meta http-equiv="Content-Style-Type" content="text/css">
|
cannam@95
|
34 <style type="text/css"><!--
|
cannam@95
|
35 pre.display { font-family:inherit }
|
cannam@95
|
36 pre.format { font-family:inherit }
|
cannam@95
|
37 pre.smalldisplay { font-family:inherit; font-size:smaller }
|
cannam@95
|
38 pre.smallformat { font-family:inherit; font-size:smaller }
|
cannam@95
|
39 pre.smallexample { font-size:smaller }
|
cannam@95
|
40 pre.smalllisp { font-size:smaller }
|
cannam@95
|
41 span.sc { font-variant:small-caps }
|
cannam@95
|
42 span.roman { font-family:serif; font-weight:normal; }
|
cannam@95
|
43 span.sansserif { font-family:sans-serif; font-weight:normal; }
|
cannam@95
|
44 --></style>
|
cannam@95
|
45 </head>
|
cannam@95
|
46 <body>
|
cannam@95
|
47 <div class="node">
|
cannam@95
|
48 <a name="FFTW-MPI-Fortran-Interface"></a>
|
cannam@95
|
49 <p>
|
cannam@95
|
50 Previous: <a rel="previous" accesskey="p" href="FFTW-MPI-Reference.html#FFTW-MPI-Reference">FFTW MPI Reference</a>,
|
cannam@95
|
51 Up: <a rel="up" accesskey="u" href="Distributed_002dmemory-FFTW-with-MPI.html#Distributed_002dmemory-FFTW-with-MPI">Distributed-memory FFTW with MPI</a>
|
cannam@95
|
52 <hr>
|
cannam@95
|
53 </div>
|
cannam@95
|
54
|
cannam@95
|
55 <h3 class="section">6.13 FFTW MPI Fortran Interface</h3>
|
cannam@95
|
56
|
cannam@95
|
57 <p><a name="index-Fortran-interface-494"></a>
|
cannam@95
|
58 <a name="index-iso_005fc_005fbinding-495"></a>The FFTW MPI interface is callable from modern Fortran compilers
|
cannam@95
|
59 supporting the Fortran 2003 <code>iso_c_binding</code> standard for calling
|
cannam@95
|
60 C functions. As described in <a href="Calling-FFTW-from-Modern-Fortran.html#Calling-FFTW-from-Modern-Fortran">Calling FFTW from Modern Fortran</a>,
|
cannam@95
|
61 this means that you can directly call FFTW's C interface from Fortran
|
cannam@95
|
62 with only minor changes in syntax. There are, however, a few things
|
cannam@95
|
63 specific to the MPI interface to keep in mind:
|
cannam@95
|
64
|
cannam@95
|
65 <ul>
|
cannam@95
|
66 <li>Instead of including <code>fftw3.f03</code> as in <a href="Overview-of-Fortran-interface.html#Overview-of-Fortran-interface">Overview of Fortran interface</a>, you should <code>include 'fftw3-mpi.f03'</code> (after
|
cannam@95
|
67 <code>use, intrinsic :: iso_c_binding</code> as before). The
|
cannam@95
|
68 <code>fftw3-mpi.f03</code> file includes <code>fftw3.f03</code>, so you should
|
cannam@95
|
69 <em>not</em> <code>include</code> them both yourself. (You will also want to
|
cannam@95
|
70 include the MPI header file, usually via <code>include 'mpif.h'</code> or
|
cannam@95
|
71 similar, although though this is not needed by <code>fftw3-mpi.f03</code>
|
cannam@95
|
72 <i>per se</i>.) (To use the ‘<samp><span class="samp">fftwl_</span></samp>’ <code>long double</code> extended-precision routines in supporting compilers, you should include <code>fftw3f-mpi.f03</code> in <em>addition</em> to <code>fftw3-mpi.f03</code>. See <a href="Extended-and-quadruple-precision-in-Fortran.html#Extended-and-quadruple-precision-in-Fortran">Extended and quadruple precision in Fortran</a>.)
|
cannam@95
|
73
|
cannam@95
|
74 <li>Because of the different storage conventions between C and Fortran,
|
cannam@95
|
75 you reverse the order of your array dimensions when passing them to
|
cannam@95
|
76 FFTW (see <a href="Reversing-array-dimensions.html#Reversing-array-dimensions">Reversing array dimensions</a>). This is merely a
|
cannam@95
|
77 difference in notation and incurs no performance overhead. However,
|
cannam@95
|
78 it means that, whereas in C the <em>first</em> dimension is distributed,
|
cannam@95
|
79 in Fortran the <em>last</em> dimension of your array is distributed.
|
cannam@95
|
80
|
cannam@95
|
81 <li><a name="index-MPI-communicator-496"></a>In Fortran, communicators are stored as <code>integer</code> types; there is
|
cannam@95
|
82 no <code>MPI_Comm</code> type, nor is there any way to access a C
|
cannam@95
|
83 <code>MPI_Comm</code>. Fortunately, this is taken care of for you by the
|
cannam@95
|
84 FFTW Fortran interface: whenever the C interface expects an
|
cannam@95
|
85 <code>MPI_Comm</code> type, you should pass the Fortran communicator as an
|
cannam@95
|
86 <code>integer</code>.<a rel="footnote" href="#fn-1" name="fnd-1"><sup>1</sup></a>
|
cannam@95
|
87
|
cannam@95
|
88 <li>Because you need to call the ‘<samp><span class="samp">local_size</span></samp>’ function to find out
|
cannam@95
|
89 how much space to allocate, and this may be <em>larger</em> than the
|
cannam@95
|
90 local portion of the array (see <a href="MPI-Data-Distribution.html#MPI-Data-Distribution">MPI Data Distribution</a>), you should
|
cannam@95
|
91 <em>always</em> allocate your arrays dynamically using FFTW's allocation
|
cannam@95
|
92 routines as described in <a href="Allocating-aligned-memory-in-Fortran.html#Allocating-aligned-memory-in-Fortran">Allocating aligned memory in Fortran</a>.
|
cannam@95
|
93 (Coincidentally, this also provides the best performance by
|
cannam@95
|
94 guaranteeding proper data alignment.)
|
cannam@95
|
95
|
cannam@95
|
96 <li>Because all sizes in the MPI FFTW interface are declared as
|
cannam@95
|
97 <code>ptrdiff_t</code> in C, you should use <code>integer(C_INTPTR_T)</code> in
|
cannam@95
|
98 Fortran (see <a href="FFTW-Fortran-type-reference.html#FFTW-Fortran-type-reference">FFTW Fortran type reference</a>).
|
cannam@95
|
99
|
cannam@95
|
100 <li><a name="index-fftw_005fexecute_005fdft-497"></a><a name="index-fftw_005fmpi_005fexecute_005fdft-498"></a><a name="index-new_002darray-execution-499"></a>In Fortran, because of the language semantics, we generally recommend
|
cannam@95
|
101 using the new-array execute functions for all plans, even in the
|
cannam@95
|
102 common case where you are executing the plan on the same arrays for
|
cannam@95
|
103 which the plan was created (see <a href="Plan-execution-in-Fortran.html#Plan-execution-in-Fortran">Plan execution in Fortran</a>).
|
cannam@95
|
104 However, note that in the MPI interface these functions are changed:
|
cannam@95
|
105 <code>fftw_execute_dft</code> becomes <code>fftw_mpi_execute_dft</code>,
|
cannam@95
|
106 etcetera. See <a href="Using-MPI-Plans.html#Using-MPI-Plans">Using MPI Plans</a>.
|
cannam@95
|
107
|
cannam@95
|
108 </ul>
|
cannam@95
|
109
|
cannam@95
|
110 <p>For example, here is a Fortran code snippet to perform a distributed
|
cannam@95
|
111 L × M complex DFT in-place. (This assumes you have already
|
cannam@95
|
112 initialized MPI with <code>MPI_init</code> and have also performed
|
cannam@95
|
113 <code>call fftw_mpi_init</code>.)
|
cannam@95
|
114
|
cannam@95
|
115 <pre class="example"> use, intrinsic :: iso_c_binding
|
cannam@95
|
116 include 'fftw3-mpi.f03'
|
cannam@95
|
117 integer(C_INTPTR_T), parameter :: L = ...
|
cannam@95
|
118 integer(C_INTPTR_T), parameter :: M = ...
|
cannam@95
|
119 type(C_PTR) :: plan, cdata
|
cannam@95
|
120 complex(C_DOUBLE_COMPLEX), pointer :: data(:,:)
|
cannam@95
|
121 integer(C_INTPTR_T) :: i, j, alloc_local, local_M, local_j_offset
|
cannam@95
|
122
|
cannam@95
|
123 ! <span class="roman">get local data size and allocate (note dimension reversal)</span>
|
cannam@95
|
124 alloc_local = fftw_mpi_local_size_2d(M, L, MPI_COMM_WORLD, &
|
cannam@95
|
125 local_M, local_j_offset)
|
cannam@95
|
126 cdata = fftw_alloc_complex(alloc_local)
|
cannam@95
|
127 call c_f_pointer(cdata, data, [L,local_M])
|
cannam@95
|
128
|
cannam@95
|
129 ! <span class="roman">create MPI plan for in-place forward DFT (note dimension reversal)</span>
|
cannam@95
|
130 plan = fftw_mpi_plan_dft_2d(M, L, data, data, MPI_COMM_WORLD, &
|
cannam@95
|
131 FFTW_FORWARD, FFTW_MEASURE)
|
cannam@95
|
132
|
cannam@95
|
133 ! <span class="roman">initialize data to some function</span> my_function(i,j)
|
cannam@95
|
134 do j = 1, local_M
|
cannam@95
|
135 do i = 1, L
|
cannam@95
|
136 data(i, j) = my_function(i, j + local_j_offset)
|
cannam@95
|
137 end do
|
cannam@95
|
138 end do
|
cannam@95
|
139
|
cannam@95
|
140 ! <span class="roman">compute transform (as many times as desired)</span>
|
cannam@95
|
141 call fftw_mpi_execute_dft(plan, data, data)
|
cannam@95
|
142
|
cannam@95
|
143 call fftw_destroy_plan(plan)
|
cannam@95
|
144 call fftw_free(cdata)
|
cannam@95
|
145 </pre>
|
cannam@95
|
146 <p>Note that when we called <code>fftw_mpi_local_size_2d</code> and
|
cannam@95
|
147 <code>fftw_mpi_plan_dft_2d</code> with the dimensions in reversed order,
|
cannam@95
|
148 since a L × M Fortran array is viewed by FFTW in C as a
|
cannam@95
|
149 M × L array. This means that the array was distributed over
|
cannam@95
|
150 the <code>M</code> dimension, the local portion of which is a
|
cannam@95
|
151 L × local_M array in Fortran. (You must <em>not</em> use an
|
cannam@95
|
152 <code>allocate</code> statement to allocate an L × local_M array,
|
cannam@95
|
153 however; you must allocate <code>alloc_local</code> complex numbers, which
|
cannam@95
|
154 may be greater than <code>L * local_M</code>, in order to reserve space for
|
cannam@95
|
155 intermediate steps of the transform.) Finally, we mention that
|
cannam@95
|
156 because C's array indices are zero-based, the <code>local_j_offset</code>
|
cannam@95
|
157 argument can conveniently be interpreted as an offset in the 1-based
|
cannam@95
|
158 <code>j</code> index (rather than as a starting index as in C).
|
cannam@95
|
159
|
cannam@95
|
160 <p>If instead you had used the <code>ior(FFTW_MEASURE,
|
cannam@95
|
161 FFTW_MPI_TRANSPOSED_OUT)</code> flag, the output of the transform would be a
|
cannam@95
|
162 transposed M × local_L array, associated with the <em>same</em>
|
cannam@95
|
163 <code>cdata</code> allocation (since the transform is in-place), and which
|
cannam@95
|
164 you could declare with:
|
cannam@95
|
165
|
cannam@95
|
166 <pre class="example"> complex(C_DOUBLE_COMPLEX), pointer :: tdata(:,:)
|
cannam@95
|
167 ...
|
cannam@95
|
168 call c_f_pointer(cdata, tdata, [M,local_L])
|
cannam@95
|
169 </pre>
|
cannam@95
|
170 <p>where <code>local_L</code> would have been obtained by changing the
|
cannam@95
|
171 <code>fftw_mpi_local_size_2d</code> call to:
|
cannam@95
|
172
|
cannam@95
|
173 <pre class="example"> alloc_local = fftw_mpi_local_size_2d_transposed(M, L, MPI_COMM_WORLD, &
|
cannam@95
|
174 local_M, local_j_offset, local_L, local_i_offset)
|
cannam@95
|
175 </pre>
|
cannam@95
|
176 <div class="footnote">
|
cannam@95
|
177 <hr>
|
cannam@95
|
178 <h4>Footnotes</h4><p class="footnote"><small>[<a name="fn-1" href="#fnd-1">1</a>]</small> Technically, this is because you aren't
|
cannam@95
|
179 actually calling the C functions directly. You are calling wrapper
|
cannam@95
|
180 functions that translate the communicator with <code>MPI_Comm_f2c</code>
|
cannam@95
|
181 before calling the ordinary C interface. This is all done
|
cannam@95
|
182 transparently, however, since the <code>fftw3-mpi.f03</code> interface file
|
cannam@95
|
183 renames the wrappers so that they are called in Fortran with the same
|
cannam@95
|
184 names as the C interface functions.</p>
|
cannam@95
|
185
|
cannam@95
|
186 <hr></div>
|
cannam@95
|
187
|
cannam@95
|
188 </body></html>
|
cannam@95
|
189
|