annotate src/fftw-3.3.3/doc/html/Basic-and-advanced-distribution-interfaces.html @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
rev   line source
cannam@95 1 <html lang="en">
cannam@95 2 <head>
cannam@95 3 <title>Basic and advanced distribution interfaces - FFTW 3.3.3</title>
cannam@95 4 <meta http-equiv="Content-Type" content="text/html">
cannam@95 5 <meta name="description" content="FFTW 3.3.3">
cannam@95 6 <meta name="generator" content="makeinfo 4.13">
cannam@95 7 <link title="Top" rel="start" href="index.html#Top">
cannam@95 8 <link rel="up" href="MPI-Data-Distribution.html#MPI-Data-Distribution" title="MPI Data Distribution">
cannam@95 9 <link rel="prev" href="MPI-Data-Distribution.html#MPI-Data-Distribution" title="MPI Data Distribution">
cannam@95 10 <link rel="next" href="Load-balancing.html#Load-balancing" title="Load balancing">
cannam@95 11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
cannam@95 12 <!--
cannam@95 13 This manual is for FFTW
cannam@95 14 (version 3.3.3, 25 November 2012).
cannam@95 15
cannam@95 16 Copyright (C) 2003 Matteo Frigo.
cannam@95 17
cannam@95 18 Copyright (C) 2003 Massachusetts Institute of Technology.
cannam@95 19
cannam@95 20 Permission is granted to make and distribute verbatim copies of
cannam@95 21 this manual provided the copyright notice and this permission
cannam@95 22 notice are preserved on all copies.
cannam@95 23
cannam@95 24 Permission is granted to copy and distribute modified versions of
cannam@95 25 this manual under the conditions for verbatim copying, provided
cannam@95 26 that the entire resulting derived work is distributed under the
cannam@95 27 terms of a permission notice identical to this one.
cannam@95 28
cannam@95 29 Permission is granted to copy and distribute translations of this
cannam@95 30 manual into another language, under the above conditions for
cannam@95 31 modified versions, except that this permission notice may be
cannam@95 32 stated in a translation approved by the Free Software Foundation.
cannam@95 33 -->
cannam@95 34 <meta http-equiv="Content-Style-Type" content="text/css">
cannam@95 35 <style type="text/css"><!--
cannam@95 36 pre.display { font-family:inherit }
cannam@95 37 pre.format { font-family:inherit }
cannam@95 38 pre.smalldisplay { font-family:inherit; font-size:smaller }
cannam@95 39 pre.smallformat { font-family:inherit; font-size:smaller }
cannam@95 40 pre.smallexample { font-size:smaller }
cannam@95 41 pre.smalllisp { font-size:smaller }
cannam@95 42 span.sc { font-variant:small-caps }
cannam@95 43 span.roman { font-family:serif; font-weight:normal; }
cannam@95 44 span.sansserif { font-family:sans-serif; font-weight:normal; }
cannam@95 45 --></style>
cannam@95 46 </head>
cannam@95 47 <body>
cannam@95 48 <div class="node">
cannam@95 49 <a name="Basic-and-advanced-distribution-interfaces"></a>
cannam@95 50 <p>
cannam@95 51 Next:&nbsp;<a rel="next" accesskey="n" href="Load-balancing.html#Load-balancing">Load balancing</a>,
cannam@95 52 Previous:&nbsp;<a rel="previous" accesskey="p" href="MPI-Data-Distribution.html#MPI-Data-Distribution">MPI Data Distribution</a>,
cannam@95 53 Up:&nbsp;<a rel="up" accesskey="u" href="MPI-Data-Distribution.html#MPI-Data-Distribution">MPI Data Distribution</a>
cannam@95 54 <hr>
cannam@95 55 </div>
cannam@95 56
cannam@95 57 <h4 class="subsection">6.4.1 Basic and advanced distribution interfaces</h4>
cannam@95 58
cannam@95 59 <p>As with the planner interface, the &lsquo;<samp><span class="samp">fftw_mpi_local_size</span></samp>&rsquo;
cannam@95 60 distribution interface is broken into basic and advanced
cannam@95 61 (&lsquo;<samp><span class="samp">_many</span></samp>&rsquo;) interfaces, where the latter allows you to specify the
cannam@95 62 block size manually and also to request block sizes when computing
cannam@95 63 multiple transforms simultaneously. These functions are documented
cannam@95 64 more exhaustively by the FFTW MPI Reference, but we summarize the
cannam@95 65 basic ideas here using a couple of two-dimensional examples.
cannam@95 66
cannam@95 67 <p>For the 100&nbsp;&times;&nbsp;200 complex-DFT example, above, we would find
cannam@95 68 the distribution by calling the following function in the basic
cannam@95 69 interface:
cannam@95 70
cannam@95 71 <pre class="example"> ptrdiff_t fftw_mpi_local_size_2d(ptrdiff_t n0, ptrdiff_t n1, MPI_Comm comm,
cannam@95 72 ptrdiff_t *local_n0, ptrdiff_t *local_0_start);
cannam@95 73 </pre>
cannam@95 74 <p><a name="index-fftw_005fmpi_005flocal_005fsize_005f2d-370"></a>
cannam@95 75 Given the total size of the data to be transformed (here, <code>n0 =
cannam@95 76 100</code> and <code>n1 = 200</code>) and an MPI communicator (<code>comm</code>), this
cannam@95 77 function provides three numbers.
cannam@95 78
cannam@95 79 <p>First, it describes the shape of the local data: the current process
cannam@95 80 should store a <code>local_n0</code> by <code>n1</code> slice of the overall
cannam@95 81 dataset, in row-major order (<code>n1</code> dimension contiguous), starting
cannam@95 82 at index <code>local_0_start</code>. That is, if the total dataset is
cannam@95 83 viewed as a <code>n0</code> by <code>n1</code> matrix, the current process should
cannam@95 84 store the rows <code>local_0_start</code> to
cannam@95 85 <code>local_0_start+local_n0-1</code>. Obviously, if you are running with
cannam@95 86 only a single MPI process, that process will store the entire array:
cannam@95 87 <code>local_0_start</code> will be zero and <code>local_n0</code> will be
cannam@95 88 <code>n0</code>. See <a href="Row_002dmajor-Format.html#Row_002dmajor-Format">Row-major Format</a>.
cannam@95 89 <a name="index-row_002dmajor-371"></a>
cannam@95 90
cannam@95 91 <p>Second, the return value is the total number of data elements (e.g.,
cannam@95 92 complex numbers for a complex DFT) that should be allocated for the
cannam@95 93 input and output arrays on the current process (ideally with
cannam@95 94 <code>fftw_malloc</code> or an &lsquo;<samp><span class="samp">fftw_alloc</span></samp>&rsquo; function, to ensure optimal
cannam@95 95 alignment). It might seem that this should always be equal to
cannam@95 96 <code>local_n0 * n1</code>, but this is <em>not</em> the case. FFTW's
cannam@95 97 distributed FFT algorithms require data redistributions at
cannam@95 98 intermediate stages of the transform, and in some circumstances this
cannam@95 99 may require slightly larger local storage. This is discussed in more
cannam@95 100 detail below, under <a href="Load-balancing.html#Load-balancing">Load balancing</a>.
cannam@95 101 <a name="index-fftw_005fmalloc-372"></a><a name="index-fftw_005falloc_005fcomplex-373"></a>
cannam@95 102
cannam@95 103 <p><a name="index-advanced-interface-374"></a>The advanced-interface &lsquo;<samp><span class="samp">local_size</span></samp>&rsquo; function for multidimensional
cannam@95 104 transforms returns the same three things (<code>local_n0</code>,
cannam@95 105 <code>local_0_start</code>, and the total number of elements to allocate),
cannam@95 106 but takes more inputs:
cannam@95 107
cannam@95 108 <pre class="example"> ptrdiff_t fftw_mpi_local_size_many(int rnk, const ptrdiff_t *n,
cannam@95 109 ptrdiff_t howmany,
cannam@95 110 ptrdiff_t block0,
cannam@95 111 MPI_Comm comm,
cannam@95 112 ptrdiff_t *local_n0,
cannam@95 113 ptrdiff_t *local_0_start);
cannam@95 114 </pre>
cannam@95 115 <p><a name="index-fftw_005fmpi_005flocal_005fsize_005fmany-375"></a>
cannam@95 116 The two-dimensional case above corresponds to <code>rnk = 2</code> and an
cannam@95 117 array <code>n</code> of length 2 with <code>n[0] = n0</code> and <code>n[1] = n1</code>.
cannam@95 118 This routine is for any <code>rnk &gt; 1</code>; one-dimensional transforms
cannam@95 119 have their own interface because they work slightly differently, as
cannam@95 120 discussed below.
cannam@95 121
cannam@95 122 <p>First, the advanced interface allows you to perform multiple
cannam@95 123 transforms at once, of interleaved data, as specified by the
cannam@95 124 <code>howmany</code> parameter. (<code>hoamany</code> is 1 for a single
cannam@95 125 transform.)
cannam@95 126
cannam@95 127 <p>Second, here you can specify your desired block size in the <code>n0</code>
cannam@95 128 dimension, <code>block0</code>. To use FFTW's default block size, pass
cannam@95 129 <code>FFTW_MPI_DEFAULT_BLOCK</code> (0) for <code>block0</code>. Otherwise, on
cannam@95 130 <code>P</code> processes, FFTW will return <code>local_n0</code> equal to
cannam@95 131 <code>block0</code> on the first <code>P / block0</code> processes (rounded down),
cannam@95 132 return <code>local_n0</code> equal to <code>n0 - block0 * (P / block0)</code> on
cannam@95 133 the next process, and <code>local_n0</code> equal to zero on any remaining
cannam@95 134 processes. In general, we recommend using the default block size
cannam@95 135 (which corresponds to <code>n0 / P</code>, rounded up).
cannam@95 136 <a name="index-FFTW_005fMPI_005fDEFAULT_005fBLOCK-376"></a><a name="index-block-distribution-377"></a>
cannam@95 137
cannam@95 138 <p>For example, suppose you have <code>P = 4</code> processes and <code>n0 =
cannam@95 139 21</code>. The default will be a block size of <code>6</code>, which will give
cannam@95 140 <code>local_n0 = 6</code> on the first three processes and <code>local_n0 =
cannam@95 141 3</code> on the last process. Instead, however, you could specify
cannam@95 142 <code>block0 = 5</code> if you wanted, which would give <code>local_n0 = 5</code>
cannam@95 143 on processes 0 to 2, <code>local_n0 = 6</code> on process 3. (This choice,
cannam@95 144 while it may look superficially more &ldquo;balanced,&rdquo; has the same
cannam@95 145 critical path as FFTW's default but requires more communications.)
cannam@95 146
cannam@95 147 </body></html>
cannam@95 148