annotate src/fftw-3.3.3/dft/simd/common/t2fv_10.c @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@95 22 /* Generated on Sun Nov 25 07:38:41 EST 2012 */
cannam@95 23
cannam@95 24 #include "codelet-dft.h"
cannam@95 25
cannam@95 26 #ifdef HAVE_FMA
cannam@95 27
cannam@95 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name t2fv_10 -include t2f.h */
cannam@95 29
cannam@95 30 /*
cannam@95 31 * This function contains 51 FP additions, 40 FP multiplications,
cannam@95 32 * (or, 33 additions, 22 multiplications, 18 fused multiply/add),
cannam@95 33 * 43 stack variables, 4 constants, and 20 memory accesses
cannam@95 34 */
cannam@95 35 #include "t2f.h"
cannam@95 36
cannam@95 37 static void t2fv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 38 {
cannam@95 39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@95 40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@95 41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
cannam@95 42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@95 43 {
cannam@95 44 INT m;
cannam@95 45 R *x;
cannam@95 46 x = ri;
cannam@95 47 for (m = mb, W = W + (mb * ((TWVL / VL) * 18)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(10, rs)) {
cannam@95 48 V Td, TA, T4, Ta, Tk, TE, Tp, TF, TB, T9, T1, T2, Tb;
cannam@95 49 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@95 50 T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@95 51 {
cannam@95 52 V Tg, Tn, Ti, Tl;
cannam@95 53 Tg = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@95 54 Tn = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@95 55 Ti = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@95 56 Tl = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@95 57 {
cannam@95 58 V T6, T8, T5, Tc;
cannam@95 59 T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@95 60 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@95 61 {
cannam@95 62 V T3, Th, To, Tj, Tm, T7;
cannam@95 63 T7 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@95 64 T3 = BYTWJ(&(W[TWVL * 8]), T2);
cannam@95 65 Th = BYTWJ(&(W[TWVL * 6]), Tg);
cannam@95 66 To = BYTWJ(&(W[0]), Tn);
cannam@95 67 Tj = BYTWJ(&(W[TWVL * 16]), Ti);
cannam@95 68 Tm = BYTWJ(&(W[TWVL * 10]), Tl);
cannam@95 69 T6 = BYTWJ(&(W[TWVL * 2]), T5);
cannam@95 70 Td = BYTWJ(&(W[TWVL * 4]), Tc);
cannam@95 71 T8 = BYTWJ(&(W[TWVL * 12]), T7);
cannam@95 72 TA = VADD(T1, T3);
cannam@95 73 T4 = VSUB(T1, T3);
cannam@95 74 Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@95 75 Tk = VSUB(Th, Tj);
cannam@95 76 TE = VADD(Th, Tj);
cannam@95 77 Tp = VSUB(Tm, To);
cannam@95 78 TF = VADD(Tm, To);
cannam@95 79 }
cannam@95 80 TB = VADD(T6, T8);
cannam@95 81 T9 = VSUB(T6, T8);
cannam@95 82 }
cannam@95 83 }
cannam@95 84 Tb = BYTWJ(&(W[TWVL * 14]), Ta);
cannam@95 85 {
cannam@95 86 V TL, TG, Tw, Tq, TC, Te;
cannam@95 87 TL = VSUB(TE, TF);
cannam@95 88 TG = VADD(TE, TF);
cannam@95 89 Tw = VSUB(Tk, Tp);
cannam@95 90 Tq = VADD(Tk, Tp);
cannam@95 91 TC = VADD(Tb, Td);
cannam@95 92 Te = VSUB(Tb, Td);
cannam@95 93 {
cannam@95 94 V TM, TD, Tv, Tf;
cannam@95 95 TM = VSUB(TB, TC);
cannam@95 96 TD = VADD(TB, TC);
cannam@95 97 Tv = VSUB(T9, Te);
cannam@95 98 Tf = VADD(T9, Te);
cannam@95 99 {
cannam@95 100 V TP, TN, TH, TJ, Tz, Tx, Tr, Tt, TI, Ts;
cannam@95 101 TP = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TL, TM));
cannam@95 102 TN = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TM, TL));
cannam@95 103 TH = VADD(TD, TG);
cannam@95 104 TJ = VSUB(TD, TG);
cannam@95 105 Tz = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tv, Tw));
cannam@95 106 Tx = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tw, Tv));
cannam@95 107 Tr = VADD(Tf, Tq);
cannam@95 108 Tt = VSUB(Tf, Tq);
cannam@95 109 ST(&(x[0]), VADD(TA, TH), ms, &(x[0]));
cannam@95 110 TI = VFNMS(LDK(KP250000000), TH, TA);
cannam@95 111 ST(&(x[WS(rs, 5)]), VADD(T4, Tr), ms, &(x[WS(rs, 1)]));
cannam@95 112 Ts = VFNMS(LDK(KP250000000), Tr, T4);
cannam@95 113 {
cannam@95 114 V TK, TO, Tu, Ty;
cannam@95 115 TK = VFNMS(LDK(KP559016994), TJ, TI);
cannam@95 116 TO = VFMA(LDK(KP559016994), TJ, TI);
cannam@95 117 Tu = VFMA(LDK(KP559016994), Tt, Ts);
cannam@95 118 Ty = VFNMS(LDK(KP559016994), Tt, Ts);
cannam@95 119 ST(&(x[WS(rs, 8)]), VFNMSI(TN, TK), ms, &(x[0]));
cannam@95 120 ST(&(x[WS(rs, 2)]), VFMAI(TN, TK), ms, &(x[0]));
cannam@95 121 ST(&(x[WS(rs, 6)]), VFNMSI(TP, TO), ms, &(x[0]));
cannam@95 122 ST(&(x[WS(rs, 4)]), VFMAI(TP, TO), ms, &(x[0]));
cannam@95 123 ST(&(x[WS(rs, 9)]), VFMAI(Tx, Tu), ms, &(x[WS(rs, 1)]));
cannam@95 124 ST(&(x[WS(rs, 1)]), VFNMSI(Tx, Tu), ms, &(x[WS(rs, 1)]));
cannam@95 125 ST(&(x[WS(rs, 7)]), VFMAI(Tz, Ty), ms, &(x[WS(rs, 1)]));
cannam@95 126 ST(&(x[WS(rs, 3)]), VFNMSI(Tz, Ty), ms, &(x[WS(rs, 1)]));
cannam@95 127 }
cannam@95 128 }
cannam@95 129 }
cannam@95 130 }
cannam@95 131 }
cannam@95 132 }
cannam@95 133 VLEAVE();
cannam@95 134 }
cannam@95 135
cannam@95 136 static const tw_instr twinstr[] = {
cannam@95 137 VTW(0, 1),
cannam@95 138 VTW(0, 2),
cannam@95 139 VTW(0, 3),
cannam@95 140 VTW(0, 4),
cannam@95 141 VTW(0, 5),
cannam@95 142 VTW(0, 6),
cannam@95 143 VTW(0, 7),
cannam@95 144 VTW(0, 8),
cannam@95 145 VTW(0, 9),
cannam@95 146 {TW_NEXT, VL, 0}
cannam@95 147 };
cannam@95 148
cannam@95 149 static const ct_desc desc = { 10, XSIMD_STRING("t2fv_10"), twinstr, &GENUS, {33, 22, 18, 0}, 0, 0, 0 };
cannam@95 150
cannam@95 151 void XSIMD(codelet_t2fv_10) (planner *p) {
cannam@95 152 X(kdft_dit_register) (p, t2fv_10, &desc);
cannam@95 153 }
cannam@95 154 #else /* HAVE_FMA */
cannam@95 155
cannam@95 156 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 10 -name t2fv_10 -include t2f.h */
cannam@95 157
cannam@95 158 /*
cannam@95 159 * This function contains 51 FP additions, 30 FP multiplications,
cannam@95 160 * (or, 45 additions, 24 multiplications, 6 fused multiply/add),
cannam@95 161 * 32 stack variables, 4 constants, and 20 memory accesses
cannam@95 162 */
cannam@95 163 #include "t2f.h"
cannam@95 164
cannam@95 165 static void t2fv_10(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 166 {
cannam@95 167 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
cannam@95 168 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@95 169 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@95 170 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@95 171 {
cannam@95 172 INT m;
cannam@95 173 R *x;
cannam@95 174 x = ri;
cannam@95 175 for (m = mb, W = W + (mb * ((TWVL / VL) * 18)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 18), MAKE_VOLATILE_STRIDE(10, rs)) {
cannam@95 176 V Tr, TH, Tg, Tl, Tm, TA, TB, TJ, T5, Ta, Tb, TD, TE, TI, To;
cannam@95 177 V Tq, Tp;
cannam@95 178 To = LD(&(x[0]), ms, &(x[0]));
cannam@95 179 Tp = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@95 180 Tq = BYTWJ(&(W[TWVL * 8]), Tp);
cannam@95 181 Tr = VSUB(To, Tq);
cannam@95 182 TH = VADD(To, Tq);
cannam@95 183 {
cannam@95 184 V Td, Tk, Tf, Ti;
cannam@95 185 {
cannam@95 186 V Tc, Tj, Te, Th;
cannam@95 187 Tc = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@95 188 Td = BYTWJ(&(W[TWVL * 6]), Tc);
cannam@95 189 Tj = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@95 190 Tk = BYTWJ(&(W[0]), Tj);
cannam@95 191 Te = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@95 192 Tf = BYTWJ(&(W[TWVL * 16]), Te);
cannam@95 193 Th = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@95 194 Ti = BYTWJ(&(W[TWVL * 10]), Th);
cannam@95 195 }
cannam@95 196 Tg = VSUB(Td, Tf);
cannam@95 197 Tl = VSUB(Ti, Tk);
cannam@95 198 Tm = VADD(Tg, Tl);
cannam@95 199 TA = VADD(Td, Tf);
cannam@95 200 TB = VADD(Ti, Tk);
cannam@95 201 TJ = VADD(TA, TB);
cannam@95 202 }
cannam@95 203 {
cannam@95 204 V T2, T9, T4, T7;
cannam@95 205 {
cannam@95 206 V T1, T8, T3, T6;
cannam@95 207 T1 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@95 208 T2 = BYTWJ(&(W[TWVL * 2]), T1);
cannam@95 209 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@95 210 T9 = BYTWJ(&(W[TWVL * 4]), T8);
cannam@95 211 T3 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@95 212 T4 = BYTWJ(&(W[TWVL * 12]), T3);
cannam@95 213 T6 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@95 214 T7 = BYTWJ(&(W[TWVL * 14]), T6);
cannam@95 215 }
cannam@95 216 T5 = VSUB(T2, T4);
cannam@95 217 Ta = VSUB(T7, T9);
cannam@95 218 Tb = VADD(T5, Ta);
cannam@95 219 TD = VADD(T2, T4);
cannam@95 220 TE = VADD(T7, T9);
cannam@95 221 TI = VADD(TD, TE);
cannam@95 222 }
cannam@95 223 {
cannam@95 224 V Tn, Ts, Tt, Tx, Tz, Tv, Tw, Ty, Tu;
cannam@95 225 Tn = VMUL(LDK(KP559016994), VSUB(Tb, Tm));
cannam@95 226 Ts = VADD(Tb, Tm);
cannam@95 227 Tt = VFNMS(LDK(KP250000000), Ts, Tr);
cannam@95 228 Tv = VSUB(T5, Ta);
cannam@95 229 Tw = VSUB(Tg, Tl);
cannam@95 230 Tx = VBYI(VFMA(LDK(KP951056516), Tv, VMUL(LDK(KP587785252), Tw)));
cannam@95 231 Tz = VBYI(VFNMS(LDK(KP587785252), Tv, VMUL(LDK(KP951056516), Tw)));
cannam@95 232 ST(&(x[WS(rs, 5)]), VADD(Tr, Ts), ms, &(x[WS(rs, 1)]));
cannam@95 233 Ty = VSUB(Tt, Tn);
cannam@95 234 ST(&(x[WS(rs, 3)]), VSUB(Ty, Tz), ms, &(x[WS(rs, 1)]));
cannam@95 235 ST(&(x[WS(rs, 7)]), VADD(Tz, Ty), ms, &(x[WS(rs, 1)]));
cannam@95 236 Tu = VADD(Tn, Tt);
cannam@95 237 ST(&(x[WS(rs, 1)]), VSUB(Tu, Tx), ms, &(x[WS(rs, 1)]));
cannam@95 238 ST(&(x[WS(rs, 9)]), VADD(Tx, Tu), ms, &(x[WS(rs, 1)]));
cannam@95 239 }
cannam@95 240 {
cannam@95 241 V TM, TK, TL, TG, TO, TC, TF, TP, TN;
cannam@95 242 TM = VMUL(LDK(KP559016994), VSUB(TI, TJ));
cannam@95 243 TK = VADD(TI, TJ);
cannam@95 244 TL = VFNMS(LDK(KP250000000), TK, TH);
cannam@95 245 TC = VSUB(TA, TB);
cannam@95 246 TF = VSUB(TD, TE);
cannam@95 247 TG = VBYI(VFNMS(LDK(KP587785252), TF, VMUL(LDK(KP951056516), TC)));
cannam@95 248 TO = VBYI(VFMA(LDK(KP951056516), TF, VMUL(LDK(KP587785252), TC)));
cannam@95 249 ST(&(x[0]), VADD(TH, TK), ms, &(x[0]));
cannam@95 250 TP = VADD(TM, TL);
cannam@95 251 ST(&(x[WS(rs, 4)]), VADD(TO, TP), ms, &(x[0]));
cannam@95 252 ST(&(x[WS(rs, 6)]), VSUB(TP, TO), ms, &(x[0]));
cannam@95 253 TN = VSUB(TL, TM);
cannam@95 254 ST(&(x[WS(rs, 2)]), VADD(TG, TN), ms, &(x[0]));
cannam@95 255 ST(&(x[WS(rs, 8)]), VSUB(TN, TG), ms, &(x[0]));
cannam@95 256 }
cannam@95 257 }
cannam@95 258 }
cannam@95 259 VLEAVE();
cannam@95 260 }
cannam@95 261
cannam@95 262 static const tw_instr twinstr[] = {
cannam@95 263 VTW(0, 1),
cannam@95 264 VTW(0, 2),
cannam@95 265 VTW(0, 3),
cannam@95 266 VTW(0, 4),
cannam@95 267 VTW(0, 5),
cannam@95 268 VTW(0, 6),
cannam@95 269 VTW(0, 7),
cannam@95 270 VTW(0, 8),
cannam@95 271 VTW(0, 9),
cannam@95 272 {TW_NEXT, VL, 0}
cannam@95 273 };
cannam@95 274
cannam@95 275 static const ct_desc desc = { 10, XSIMD_STRING("t2fv_10"), twinstr, &GENUS, {45, 24, 6, 0}, 0, 0, 0 };
cannam@95 276
cannam@95 277 void XSIMD(codelet_t2fv_10) (planner *p) {
cannam@95 278 X(kdft_dit_register) (p, t2fv_10, &desc);
cannam@95 279 }
cannam@95 280 #endif /* HAVE_FMA */