annotate src/fftw-3.3.3/dft/simd/common/t1sv_8.c @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@95 22 /* Generated on Sun Nov 25 07:39:24 EST 2012 */
cannam@95 23
cannam@95 24 #include "codelet-dft.h"
cannam@95 25
cannam@95 26 #ifdef HAVE_FMA
cannam@95 27
cannam@95 28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1sv_8 -include ts.h */
cannam@95 29
cannam@95 30 /*
cannam@95 31 * This function contains 66 FP additions, 36 FP multiplications,
cannam@95 32 * (or, 44 additions, 14 multiplications, 22 fused multiply/add),
cannam@95 33 * 59 stack variables, 1 constants, and 32 memory accesses
cannam@95 34 */
cannam@95 35 #include "ts.h"
cannam@95 36
cannam@95 37 static void t1sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 38 {
cannam@95 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@95 40 {
cannam@95 41 INT m;
cannam@95 42 for (m = mb, W = W + (mb * 14); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 14), MAKE_VOLATILE_STRIDE(16, rs)) {
cannam@95 43 V T1, T1m, T1l, T7, TS, Tk, TQ, Te, To, Tr, Tu, T14, TF, Tx, T16;
cannam@95 44 V TL, Tt, TW, Tp, Tq, Tw;
cannam@95 45 {
cannam@95 46 V T3, T6, T2, T5;
cannam@95 47 T1 = LD(&(ri[0]), ms, &(ri[0]));
cannam@95 48 T1m = LD(&(ii[0]), ms, &(ii[0]));
cannam@95 49 T3 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0]));
cannam@95 50 T6 = LD(&(ii[WS(rs, 4)]), ms, &(ii[0]));
cannam@95 51 T2 = LDW(&(W[TWVL * 6]));
cannam@95 52 T5 = LDW(&(W[TWVL * 7]));
cannam@95 53 {
cannam@95 54 V Tg, Tj, Ti, Ta, Td, T1k, T4, T9, Tc, TR, Th, Tf;
cannam@95 55 Tg = LD(&(ri[WS(rs, 6)]), ms, &(ri[0]));
cannam@95 56 Tj = LD(&(ii[WS(rs, 6)]), ms, &(ii[0]));
cannam@95 57 Tf = LDW(&(W[TWVL * 10]));
cannam@95 58 Ti = LDW(&(W[TWVL * 11]));
cannam@95 59 Ta = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
cannam@95 60 Td = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
cannam@95 61 T1k = VMUL(T2, T6);
cannam@95 62 T4 = VMUL(T2, T3);
cannam@95 63 T9 = LDW(&(W[TWVL * 2]));
cannam@95 64 Tc = LDW(&(W[TWVL * 3]));
cannam@95 65 TR = VMUL(Tf, Tj);
cannam@95 66 Th = VMUL(Tf, Tg);
cannam@95 67 {
cannam@95 68 V TB, TE, TH, TK, TG, TD, TJ, T13, TC, TA, TP, Tb, T15, TI, Tn;
cannam@95 69 TB = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)]));
cannam@95 70 TE = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)]));
cannam@95 71 T1l = VFNMS(T5, T3, T1k);
cannam@95 72 T7 = VFMA(T5, T6, T4);
cannam@95 73 TP = VMUL(T9, Td);
cannam@95 74 Tb = VMUL(T9, Ta);
cannam@95 75 TS = VFNMS(Ti, Tg, TR);
cannam@95 76 Tk = VFMA(Ti, Tj, Th);
cannam@95 77 TA = LDW(&(W[TWVL * 12]));
cannam@95 78 TH = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
cannam@95 79 TK = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
cannam@95 80 TG = LDW(&(W[TWVL * 4]));
cannam@95 81 TQ = VFNMS(Tc, Ta, TP);
cannam@95 82 Te = VFMA(Tc, Td, Tb);
cannam@95 83 TD = LDW(&(W[TWVL * 13]));
cannam@95 84 TJ = LDW(&(W[TWVL * 5]));
cannam@95 85 T13 = VMUL(TA, TE);
cannam@95 86 TC = VMUL(TA, TB);
cannam@95 87 To = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
cannam@95 88 T15 = VMUL(TG, TK);
cannam@95 89 TI = VMUL(TG, TH);
cannam@95 90 Tr = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
cannam@95 91 Tn = LDW(&(W[0]));
cannam@95 92 Tu = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)]));
cannam@95 93 T14 = VFNMS(TD, TB, T13);
cannam@95 94 TF = VFMA(TD, TE, TC);
cannam@95 95 Tx = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)]));
cannam@95 96 T16 = VFNMS(TJ, TH, T15);
cannam@95 97 TL = VFMA(TJ, TK, TI);
cannam@95 98 Tt = LDW(&(W[TWVL * 8]));
cannam@95 99 TW = VMUL(Tn, Tr);
cannam@95 100 Tp = VMUL(Tn, To);
cannam@95 101 Tq = LDW(&(W[TWVL * 1]));
cannam@95 102 Tw = LDW(&(W[TWVL * 9]));
cannam@95 103 }
cannam@95 104 }
cannam@95 105 }
cannam@95 106 {
cannam@95 107 V T8, T1g, TM, T1j, TX, Ts, T1n, T1r, T1s, Tl, T1c, T18, TZ, Ty, T1a;
cannam@95 108 V TU;
cannam@95 109 {
cannam@95 110 V TO, T17, T12, TY, Tv, TT;
cannam@95 111 T8 = VADD(T1, T7);
cannam@95 112 TO = VSUB(T1, T7);
cannam@95 113 T17 = VSUB(T14, T16);
cannam@95 114 T1g = VADD(T14, T16);
cannam@95 115 TM = VADD(TF, TL);
cannam@95 116 T12 = VSUB(TF, TL);
cannam@95 117 TY = VMUL(Tt, Tx);
cannam@95 118 Tv = VMUL(Tt, Tu);
cannam@95 119 TT = VSUB(TQ, TS);
cannam@95 120 T1j = VADD(TQ, TS);
cannam@95 121 TX = VFNMS(Tq, To, TW);
cannam@95 122 Ts = VFMA(Tq, Tr, Tp);
cannam@95 123 T1n = VADD(T1l, T1m);
cannam@95 124 T1r = VSUB(T1m, T1l);
cannam@95 125 T1s = VSUB(Te, Tk);
cannam@95 126 Tl = VADD(Te, Tk);
cannam@95 127 T1c = VADD(T12, T17);
cannam@95 128 T18 = VSUB(T12, T17);
cannam@95 129 TZ = VFNMS(Tw, Tu, TY);
cannam@95 130 Ty = VFMA(Tw, Tx, Tv);
cannam@95 131 T1a = VSUB(TO, TT);
cannam@95 132 TU = VADD(TO, TT);
cannam@95 133 }
cannam@95 134 {
cannam@95 135 V T1v, T1t, Tm, T1e, T1o, T1q, TN, T1p, T1d, T1u, T19, T1w, T1i, T1h;
cannam@95 136 {
cannam@95 137 V T10, T1f, Tz, TV, T11, T1b;
cannam@95 138 T1v = VADD(T1s, T1r);
cannam@95 139 T1t = VSUB(T1r, T1s);
cannam@95 140 T10 = VSUB(TX, TZ);
cannam@95 141 T1f = VADD(TX, TZ);
cannam@95 142 Tz = VADD(Ts, Ty);
cannam@95 143 TV = VSUB(Ts, Ty);
cannam@95 144 T11 = VADD(TV, T10);
cannam@95 145 T1b = VSUB(T10, TV);
cannam@95 146 Tm = VADD(T8, Tl);
cannam@95 147 T1e = VSUB(T8, Tl);
cannam@95 148 T1o = VADD(T1j, T1n);
cannam@95 149 T1q = VSUB(T1n, T1j);
cannam@95 150 TN = VADD(Tz, TM);
cannam@95 151 T1p = VSUB(TM, Tz);
cannam@95 152 T1d = VSUB(T1b, T1c);
cannam@95 153 T1u = VADD(T1b, T1c);
cannam@95 154 T19 = VADD(T11, T18);
cannam@95 155 T1w = VSUB(T18, T11);
cannam@95 156 T1i = VADD(T1f, T1g);
cannam@95 157 T1h = VSUB(T1f, T1g);
cannam@95 158 }
cannam@95 159 ST(&(ii[WS(rs, 6)]), VSUB(T1q, T1p), ms, &(ii[0]));
cannam@95 160 ST(&(ri[0]), VADD(Tm, TN), ms, &(ri[0]));
cannam@95 161 ST(&(ri[WS(rs, 4)]), VSUB(Tm, TN), ms, &(ri[0]));
cannam@95 162 ST(&(ii[WS(rs, 1)]), VFMA(LDK(KP707106781), T1u, T1t), ms, &(ii[WS(rs, 1)]));
cannam@95 163 ST(&(ii[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1u, T1t), ms, &(ii[WS(rs, 1)]));
cannam@95 164 ST(&(ri[WS(rs, 3)]), VFMA(LDK(KP707106781), T1d, T1a), ms, &(ri[WS(rs, 1)]));
cannam@95 165 ST(&(ri[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1d, T1a), ms, &(ri[WS(rs, 1)]));
cannam@95 166 ST(&(ii[WS(rs, 3)]), VFMA(LDK(KP707106781), T1w, T1v), ms, &(ii[WS(rs, 1)]));
cannam@95 167 ST(&(ii[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1w, T1v), ms, &(ii[WS(rs, 1)]));
cannam@95 168 ST(&(ri[WS(rs, 1)]), VFMA(LDK(KP707106781), T19, TU), ms, &(ri[WS(rs, 1)]));
cannam@95 169 ST(&(ri[WS(rs, 5)]), VFNMS(LDK(KP707106781), T19, TU), ms, &(ri[WS(rs, 1)]));
cannam@95 170 ST(&(ri[WS(rs, 6)]), VSUB(T1e, T1h), ms, &(ri[0]));
cannam@95 171 ST(&(ii[0]), VADD(T1i, T1o), ms, &(ii[0]));
cannam@95 172 ST(&(ii[WS(rs, 4)]), VSUB(T1o, T1i), ms, &(ii[0]));
cannam@95 173 ST(&(ri[WS(rs, 2)]), VADD(T1e, T1h), ms, &(ri[0]));
cannam@95 174 ST(&(ii[WS(rs, 2)]), VADD(T1p, T1q), ms, &(ii[0]));
cannam@95 175 }
cannam@95 176 }
cannam@95 177 }
cannam@95 178 }
cannam@95 179 VLEAVE();
cannam@95 180 }
cannam@95 181
cannam@95 182 static const tw_instr twinstr[] = {
cannam@95 183 VTW(0, 1),
cannam@95 184 VTW(0, 2),
cannam@95 185 VTW(0, 3),
cannam@95 186 VTW(0, 4),
cannam@95 187 VTW(0, 5),
cannam@95 188 VTW(0, 6),
cannam@95 189 VTW(0, 7),
cannam@95 190 {TW_NEXT, (2 * VL), 0}
cannam@95 191 };
cannam@95 192
cannam@95 193 static const ct_desc desc = { 8, XSIMD_STRING("t1sv_8"), twinstr, &GENUS, {44, 14, 22, 0}, 0, 0, 0 };
cannam@95 194
cannam@95 195 void XSIMD(codelet_t1sv_8) (planner *p) {
cannam@95 196 X(kdft_dit_register) (p, t1sv_8, &desc);
cannam@95 197 }
cannam@95 198 #else /* HAVE_FMA */
cannam@95 199
cannam@95 200 /* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1sv_8 -include ts.h */
cannam@95 201
cannam@95 202 /*
cannam@95 203 * This function contains 66 FP additions, 32 FP multiplications,
cannam@95 204 * (or, 52 additions, 18 multiplications, 14 fused multiply/add),
cannam@95 205 * 28 stack variables, 1 constants, and 32 memory accesses
cannam@95 206 */
cannam@95 207 #include "ts.h"
cannam@95 208
cannam@95 209 static void t1sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 210 {
cannam@95 211 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@95 212 {
cannam@95 213 INT m;
cannam@95 214 for (m = mb, W = W + (mb * 14); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 14), MAKE_VOLATILE_STRIDE(16, rs)) {
cannam@95 215 V T7, T1e, TH, T19, TF, T13, TR, TU, Ti, T1f, TK, T16, Tu, T12, TM;
cannam@95 216 V TP;
cannam@95 217 {
cannam@95 218 V T1, T18, T6, T17;
cannam@95 219 T1 = LD(&(ri[0]), ms, &(ri[0]));
cannam@95 220 T18 = LD(&(ii[0]), ms, &(ii[0]));
cannam@95 221 {
cannam@95 222 V T3, T5, T2, T4;
cannam@95 223 T3 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0]));
cannam@95 224 T5 = LD(&(ii[WS(rs, 4)]), ms, &(ii[0]));
cannam@95 225 T2 = LDW(&(W[TWVL * 6]));
cannam@95 226 T4 = LDW(&(W[TWVL * 7]));
cannam@95 227 T6 = VFMA(T2, T3, VMUL(T4, T5));
cannam@95 228 T17 = VFNMS(T4, T3, VMUL(T2, T5));
cannam@95 229 }
cannam@95 230 T7 = VADD(T1, T6);
cannam@95 231 T1e = VSUB(T18, T17);
cannam@95 232 TH = VSUB(T1, T6);
cannam@95 233 T19 = VADD(T17, T18);
cannam@95 234 }
cannam@95 235 {
cannam@95 236 V Tz, TS, TE, TT;
cannam@95 237 {
cannam@95 238 V Tw, Ty, Tv, Tx;
cannam@95 239 Tw = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)]));
cannam@95 240 Ty = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)]));
cannam@95 241 Tv = LDW(&(W[TWVL * 12]));
cannam@95 242 Tx = LDW(&(W[TWVL * 13]));
cannam@95 243 Tz = VFMA(Tv, Tw, VMUL(Tx, Ty));
cannam@95 244 TS = VFNMS(Tx, Tw, VMUL(Tv, Ty));
cannam@95 245 }
cannam@95 246 {
cannam@95 247 V TB, TD, TA, TC;
cannam@95 248 TB = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
cannam@95 249 TD = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
cannam@95 250 TA = LDW(&(W[TWVL * 4]));
cannam@95 251 TC = LDW(&(W[TWVL * 5]));
cannam@95 252 TE = VFMA(TA, TB, VMUL(TC, TD));
cannam@95 253 TT = VFNMS(TC, TB, VMUL(TA, TD));
cannam@95 254 }
cannam@95 255 TF = VADD(Tz, TE);
cannam@95 256 T13 = VADD(TS, TT);
cannam@95 257 TR = VSUB(Tz, TE);
cannam@95 258 TU = VSUB(TS, TT);
cannam@95 259 }
cannam@95 260 {
cannam@95 261 V Tc, TI, Th, TJ;
cannam@95 262 {
cannam@95 263 V T9, Tb, T8, Ta;
cannam@95 264 T9 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
cannam@95 265 Tb = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
cannam@95 266 T8 = LDW(&(W[TWVL * 2]));
cannam@95 267 Ta = LDW(&(W[TWVL * 3]));
cannam@95 268 Tc = VFMA(T8, T9, VMUL(Ta, Tb));
cannam@95 269 TI = VFNMS(Ta, T9, VMUL(T8, Tb));
cannam@95 270 }
cannam@95 271 {
cannam@95 272 V Te, Tg, Td, Tf;
cannam@95 273 Te = LD(&(ri[WS(rs, 6)]), ms, &(ri[0]));
cannam@95 274 Tg = LD(&(ii[WS(rs, 6)]), ms, &(ii[0]));
cannam@95 275 Td = LDW(&(W[TWVL * 10]));
cannam@95 276 Tf = LDW(&(W[TWVL * 11]));
cannam@95 277 Th = VFMA(Td, Te, VMUL(Tf, Tg));
cannam@95 278 TJ = VFNMS(Tf, Te, VMUL(Td, Tg));
cannam@95 279 }
cannam@95 280 Ti = VADD(Tc, Th);
cannam@95 281 T1f = VSUB(Tc, Th);
cannam@95 282 TK = VSUB(TI, TJ);
cannam@95 283 T16 = VADD(TI, TJ);
cannam@95 284 }
cannam@95 285 {
cannam@95 286 V To, TN, Tt, TO;
cannam@95 287 {
cannam@95 288 V Tl, Tn, Tk, Tm;
cannam@95 289 Tl = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
cannam@95 290 Tn = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
cannam@95 291 Tk = LDW(&(W[0]));
cannam@95 292 Tm = LDW(&(W[TWVL * 1]));
cannam@95 293 To = VFMA(Tk, Tl, VMUL(Tm, Tn));
cannam@95 294 TN = VFNMS(Tm, Tl, VMUL(Tk, Tn));
cannam@95 295 }
cannam@95 296 {
cannam@95 297 V Tq, Ts, Tp, Tr;
cannam@95 298 Tq = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)]));
cannam@95 299 Ts = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)]));
cannam@95 300 Tp = LDW(&(W[TWVL * 8]));
cannam@95 301 Tr = LDW(&(W[TWVL * 9]));
cannam@95 302 Tt = VFMA(Tp, Tq, VMUL(Tr, Ts));
cannam@95 303 TO = VFNMS(Tr, Tq, VMUL(Tp, Ts));
cannam@95 304 }
cannam@95 305 Tu = VADD(To, Tt);
cannam@95 306 T12 = VADD(TN, TO);
cannam@95 307 TM = VSUB(To, Tt);
cannam@95 308 TP = VSUB(TN, TO);
cannam@95 309 }
cannam@95 310 {
cannam@95 311 V Tj, TG, T1b, T1c;
cannam@95 312 Tj = VADD(T7, Ti);
cannam@95 313 TG = VADD(Tu, TF);
cannam@95 314 ST(&(ri[WS(rs, 4)]), VSUB(Tj, TG), ms, &(ri[0]));
cannam@95 315 ST(&(ri[0]), VADD(Tj, TG), ms, &(ri[0]));
cannam@95 316 {
cannam@95 317 V T15, T1a, T11, T14;
cannam@95 318 T15 = VADD(T12, T13);
cannam@95 319 T1a = VADD(T16, T19);
cannam@95 320 ST(&(ii[0]), VADD(T15, T1a), ms, &(ii[0]));
cannam@95 321 ST(&(ii[WS(rs, 4)]), VSUB(T1a, T15), ms, &(ii[0]));
cannam@95 322 T11 = VSUB(T7, Ti);
cannam@95 323 T14 = VSUB(T12, T13);
cannam@95 324 ST(&(ri[WS(rs, 6)]), VSUB(T11, T14), ms, &(ri[0]));
cannam@95 325 ST(&(ri[WS(rs, 2)]), VADD(T11, T14), ms, &(ri[0]));
cannam@95 326 }
cannam@95 327 T1b = VSUB(TF, Tu);
cannam@95 328 T1c = VSUB(T19, T16);
cannam@95 329 ST(&(ii[WS(rs, 2)]), VADD(T1b, T1c), ms, &(ii[0]));
cannam@95 330 ST(&(ii[WS(rs, 6)]), VSUB(T1c, T1b), ms, &(ii[0]));
cannam@95 331 {
cannam@95 332 V TX, T1g, T10, T1d, TY, TZ;
cannam@95 333 TX = VSUB(TH, TK);
cannam@95 334 T1g = VSUB(T1e, T1f);
cannam@95 335 TY = VSUB(TP, TM);
cannam@95 336 TZ = VADD(TR, TU);
cannam@95 337 T10 = VMUL(LDK(KP707106781), VSUB(TY, TZ));
cannam@95 338 T1d = VMUL(LDK(KP707106781), VADD(TY, TZ));
cannam@95 339 ST(&(ri[WS(rs, 7)]), VSUB(TX, T10), ms, &(ri[WS(rs, 1)]));
cannam@95 340 ST(&(ii[WS(rs, 5)]), VSUB(T1g, T1d), ms, &(ii[WS(rs, 1)]));
cannam@95 341 ST(&(ri[WS(rs, 3)]), VADD(TX, T10), ms, &(ri[WS(rs, 1)]));
cannam@95 342 ST(&(ii[WS(rs, 1)]), VADD(T1d, T1g), ms, &(ii[WS(rs, 1)]));
cannam@95 343 }
cannam@95 344 {
cannam@95 345 V TL, T1i, TW, T1h, TQ, TV;
cannam@95 346 TL = VADD(TH, TK);
cannam@95 347 T1i = VADD(T1f, T1e);
cannam@95 348 TQ = VADD(TM, TP);
cannam@95 349 TV = VSUB(TR, TU);
cannam@95 350 TW = VMUL(LDK(KP707106781), VADD(TQ, TV));
cannam@95 351 T1h = VMUL(LDK(KP707106781), VSUB(TV, TQ));
cannam@95 352 ST(&(ri[WS(rs, 5)]), VSUB(TL, TW), ms, &(ri[WS(rs, 1)]));
cannam@95 353 ST(&(ii[WS(rs, 7)]), VSUB(T1i, T1h), ms, &(ii[WS(rs, 1)]));
cannam@95 354 ST(&(ri[WS(rs, 1)]), VADD(TL, TW), ms, &(ri[WS(rs, 1)]));
cannam@95 355 ST(&(ii[WS(rs, 3)]), VADD(T1h, T1i), ms, &(ii[WS(rs, 1)]));
cannam@95 356 }
cannam@95 357 }
cannam@95 358 }
cannam@95 359 }
cannam@95 360 VLEAVE();
cannam@95 361 }
cannam@95 362
cannam@95 363 static const tw_instr twinstr[] = {
cannam@95 364 VTW(0, 1),
cannam@95 365 VTW(0, 2),
cannam@95 366 VTW(0, 3),
cannam@95 367 VTW(0, 4),
cannam@95 368 VTW(0, 5),
cannam@95 369 VTW(0, 6),
cannam@95 370 VTW(0, 7),
cannam@95 371 {TW_NEXT, (2 * VL), 0}
cannam@95 372 };
cannam@95 373
cannam@95 374 static const ct_desc desc = { 8, XSIMD_STRING("t1sv_8"), twinstr, &GENUS, {52, 18, 14, 0}, 0, 0, 0 };
cannam@95 375
cannam@95 376 void XSIMD(codelet_t1sv_8) (planner *p) {
cannam@95 377 X(kdft_dit_register) (p, t1sv_8, &desc);
cannam@95 378 }
cannam@95 379 #endif /* HAVE_FMA */