annotate src/fftw-3.3.3/dft/simd/common/t1bv_7.c @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@95 22 /* Generated on Sun Nov 25 07:39:03 EST 2012 */
cannam@95 23
cannam@95 24 #include "codelet-dft.h"
cannam@95 25
cannam@95 26 #ifdef HAVE_FMA
cannam@95 27
cannam@95 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 7 -name t1bv_7 -include t1b.h -sign 1 */
cannam@95 29
cannam@95 30 /*
cannam@95 31 * This function contains 36 FP additions, 36 FP multiplications,
cannam@95 32 * (or, 15 additions, 15 multiplications, 21 fused multiply/add),
cannam@95 33 * 42 stack variables, 6 constants, and 14 memory accesses
cannam@95 34 */
cannam@95 35 #include "t1b.h"
cannam@95 36
cannam@95 37 static void t1bv_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 38 {
cannam@95 39 DVK(KP900968867, +0.900968867902419126236102319507445051165919162);
cannam@95 40 DVK(KP801937735, +0.801937735804838252472204639014890102331838324);
cannam@95 41 DVK(KP974927912, +0.974927912181823607018131682993931217232785801);
cannam@95 42 DVK(KP692021471, +0.692021471630095869627814897002069140197260599);
cannam@95 43 DVK(KP554958132, +0.554958132087371191422194871006410481067288862);
cannam@95 44 DVK(KP356895867, +0.356895867892209443894399510021300583399127187);
cannam@95 45 {
cannam@95 46 INT m;
cannam@95 47 R *x;
cannam@95 48 x = ii;
cannam@95 49 for (m = mb, W = W + (mb * ((TWVL / VL) * 12)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 12), MAKE_VOLATILE_STRIDE(7, rs)) {
cannam@95 50 V T1, T2, T4, Te, Tc, T9, T7;
cannam@95 51 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@95 52 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@95 53 T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@95 54 Te = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@95 55 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@95 56 T9 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@95 57 T7 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@95 58 {
cannam@95 59 V T3, T5, Tf, Td, Ta, T8;
cannam@95 60 T3 = BYTW(&(W[0]), T2);
cannam@95 61 T5 = BYTW(&(W[TWVL * 10]), T4);
cannam@95 62 Tf = BYTW(&(W[TWVL * 6]), Te);
cannam@95 63 Td = BYTW(&(W[TWVL * 4]), Tc);
cannam@95 64 Ta = BYTW(&(W[TWVL * 8]), T9);
cannam@95 65 T8 = BYTW(&(W[TWVL * 2]), T7);
cannam@95 66 {
cannam@95 67 V T6, Tm, Tg, Tk, Tb, Tl;
cannam@95 68 T6 = VADD(T3, T5);
cannam@95 69 Tm = VSUB(T3, T5);
cannam@95 70 Tg = VADD(Td, Tf);
cannam@95 71 Tk = VSUB(Td, Tf);
cannam@95 72 Tb = VADD(T8, Ta);
cannam@95 73 Tl = VSUB(T8, Ta);
cannam@95 74 {
cannam@95 75 V Tp, Tx, Tu, Th, Ts, Tn, Tq, Ty;
cannam@95 76 Tp = VFNMS(LDK(KP356895867), T6, Tg);
cannam@95 77 Tx = VFMA(LDK(KP554958132), Tk, Tm);
cannam@95 78 ST(&(x[0]), VADD(T1, VADD(T6, VADD(Tb, Tg))), ms, &(x[0]));
cannam@95 79 Tu = VFNMS(LDK(KP356895867), Tb, T6);
cannam@95 80 Th = VFNMS(LDK(KP356895867), Tg, Tb);
cannam@95 81 Ts = VFMA(LDK(KP554958132), Tl, Tk);
cannam@95 82 Tn = VFNMS(LDK(KP554958132), Tm, Tl);
cannam@95 83 Tq = VFNMS(LDK(KP692021471), Tp, Tb);
cannam@95 84 Ty = VMUL(LDK(KP974927912), VFMA(LDK(KP801937735), Tx, Tl));
cannam@95 85 {
cannam@95 86 V Tv, Ti, Tt, To, Tr, Tw, Tj;
cannam@95 87 Tv = VFNMS(LDK(KP692021471), Tu, Tg);
cannam@95 88 Ti = VFNMS(LDK(KP692021471), Th, T6);
cannam@95 89 Tt = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Ts, Tm));
cannam@95 90 To = VMUL(LDK(KP974927912), VFNMS(LDK(KP801937735), Tn, Tk));
cannam@95 91 Tr = VFNMS(LDK(KP900968867), Tq, T1);
cannam@95 92 Tw = VFNMS(LDK(KP900968867), Tv, T1);
cannam@95 93 Tj = VFNMS(LDK(KP900968867), Ti, T1);
cannam@95 94 ST(&(x[WS(rs, 5)]), VFNMSI(Tt, Tr), ms, &(x[WS(rs, 1)]));
cannam@95 95 ST(&(x[WS(rs, 2)]), VFMAI(Tt, Tr), ms, &(x[0]));
cannam@95 96 ST(&(x[WS(rs, 6)]), VFNMSI(Ty, Tw), ms, &(x[0]));
cannam@95 97 ST(&(x[WS(rs, 1)]), VFMAI(Ty, Tw), ms, &(x[WS(rs, 1)]));
cannam@95 98 ST(&(x[WS(rs, 4)]), VFNMSI(To, Tj), ms, &(x[0]));
cannam@95 99 ST(&(x[WS(rs, 3)]), VFMAI(To, Tj), ms, &(x[WS(rs, 1)]));
cannam@95 100 }
cannam@95 101 }
cannam@95 102 }
cannam@95 103 }
cannam@95 104 }
cannam@95 105 }
cannam@95 106 VLEAVE();
cannam@95 107 }
cannam@95 108
cannam@95 109 static const tw_instr twinstr[] = {
cannam@95 110 VTW(0, 1),
cannam@95 111 VTW(0, 2),
cannam@95 112 VTW(0, 3),
cannam@95 113 VTW(0, 4),
cannam@95 114 VTW(0, 5),
cannam@95 115 VTW(0, 6),
cannam@95 116 {TW_NEXT, VL, 0}
cannam@95 117 };
cannam@95 118
cannam@95 119 static const ct_desc desc = { 7, XSIMD_STRING("t1bv_7"), twinstr, &GENUS, {15, 15, 21, 0}, 0, 0, 0 };
cannam@95 120
cannam@95 121 void XSIMD(codelet_t1bv_7) (planner *p) {
cannam@95 122 X(kdft_dit_register) (p, t1bv_7, &desc);
cannam@95 123 }
cannam@95 124 #else /* HAVE_FMA */
cannam@95 125
cannam@95 126 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 7 -name t1bv_7 -include t1b.h -sign 1 */
cannam@95 127
cannam@95 128 /*
cannam@95 129 * This function contains 36 FP additions, 30 FP multiplications,
cannam@95 130 * (or, 24 additions, 18 multiplications, 12 fused multiply/add),
cannam@95 131 * 21 stack variables, 6 constants, and 14 memory accesses
cannam@95 132 */
cannam@95 133 #include "t1b.h"
cannam@95 134
cannam@95 135 static void t1bv_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 136 {
cannam@95 137 DVK(KP222520933, +0.222520933956314404288902564496794759466355569);
cannam@95 138 DVK(KP900968867, +0.900968867902419126236102319507445051165919162);
cannam@95 139 DVK(KP623489801, +0.623489801858733530525004884004239810632274731);
cannam@95 140 DVK(KP433883739, +0.433883739117558120475768332848358754609990728);
cannam@95 141 DVK(KP781831482, +0.781831482468029808708444526674057750232334519);
cannam@95 142 DVK(KP974927912, +0.974927912181823607018131682993931217232785801);
cannam@95 143 {
cannam@95 144 INT m;
cannam@95 145 R *x;
cannam@95 146 x = ii;
cannam@95 147 for (m = mb, W = W + (mb * ((TWVL / VL) * 12)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 12), MAKE_VOLATILE_STRIDE(7, rs)) {
cannam@95 148 V Th, Tf, Ti, T5, Tk, Ta, Tj, To, Tp;
cannam@95 149 Th = LD(&(x[0]), ms, &(x[0]));
cannam@95 150 {
cannam@95 151 V Tc, Te, Tb, Td;
cannam@95 152 Tb = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@95 153 Tc = BYTW(&(W[TWVL * 2]), Tb);
cannam@95 154 Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@95 155 Te = BYTW(&(W[TWVL * 8]), Td);
cannam@95 156 Tf = VSUB(Tc, Te);
cannam@95 157 Ti = VADD(Tc, Te);
cannam@95 158 }
cannam@95 159 {
cannam@95 160 V T2, T4, T1, T3;
cannam@95 161 T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@95 162 T2 = BYTW(&(W[0]), T1);
cannam@95 163 T3 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@95 164 T4 = BYTW(&(W[TWVL * 10]), T3);
cannam@95 165 T5 = VSUB(T2, T4);
cannam@95 166 Tk = VADD(T2, T4);
cannam@95 167 }
cannam@95 168 {
cannam@95 169 V T7, T9, T6, T8;
cannam@95 170 T6 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@95 171 T7 = BYTW(&(W[TWVL * 4]), T6);
cannam@95 172 T8 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@95 173 T9 = BYTW(&(W[TWVL * 6]), T8);
cannam@95 174 Ta = VSUB(T7, T9);
cannam@95 175 Tj = VADD(T7, T9);
cannam@95 176 }
cannam@95 177 ST(&(x[0]), VADD(Th, VADD(Tk, VADD(Ti, Tj))), ms, &(x[0]));
cannam@95 178 To = VBYI(VFNMS(LDK(KP781831482), Ta, VFNMS(LDK(KP433883739), Tf, VMUL(LDK(KP974927912), T5))));
cannam@95 179 Tp = VFMA(LDK(KP623489801), Tj, VFNMS(LDK(KP900968867), Ti, VFNMS(LDK(KP222520933), Tk, Th)));
cannam@95 180 ST(&(x[WS(rs, 2)]), VADD(To, Tp), ms, &(x[0]));
cannam@95 181 ST(&(x[WS(rs, 5)]), VSUB(Tp, To), ms, &(x[WS(rs, 1)]));
cannam@95 182 {
cannam@95 183 V Tg, Tl, Tm, Tn;
cannam@95 184 Tg = VBYI(VFMA(LDK(KP433883739), T5, VFNMS(LDK(KP781831482), Tf, VMUL(LDK(KP974927912), Ta))));
cannam@95 185 Tl = VFMA(LDK(KP623489801), Ti, VFNMS(LDK(KP222520933), Tj, VFNMS(LDK(KP900968867), Tk, Th)));
cannam@95 186 ST(&(x[WS(rs, 3)]), VADD(Tg, Tl), ms, &(x[WS(rs, 1)]));
cannam@95 187 ST(&(x[WS(rs, 4)]), VSUB(Tl, Tg), ms, &(x[0]));
cannam@95 188 Tm = VBYI(VFMA(LDK(KP781831482), T5, VFMA(LDK(KP974927912), Tf, VMUL(LDK(KP433883739), Ta))));
cannam@95 189 Tn = VFMA(LDK(KP623489801), Tk, VFNMS(LDK(KP900968867), Tj, VFNMS(LDK(KP222520933), Ti, Th)));
cannam@95 190 ST(&(x[WS(rs, 1)]), VADD(Tm, Tn), ms, &(x[WS(rs, 1)]));
cannam@95 191 ST(&(x[WS(rs, 6)]), VSUB(Tn, Tm), ms, &(x[0]));
cannam@95 192 }
cannam@95 193 }
cannam@95 194 }
cannam@95 195 VLEAVE();
cannam@95 196 }
cannam@95 197
cannam@95 198 static const tw_instr twinstr[] = {
cannam@95 199 VTW(0, 1),
cannam@95 200 VTW(0, 2),
cannam@95 201 VTW(0, 3),
cannam@95 202 VTW(0, 4),
cannam@95 203 VTW(0, 5),
cannam@95 204 VTW(0, 6),
cannam@95 205 {TW_NEXT, VL, 0}
cannam@95 206 };
cannam@95 207
cannam@95 208 static const ct_desc desc = { 7, XSIMD_STRING("t1bv_7"), twinstr, &GENUS, {24, 18, 12, 0}, 0, 0, 0 };
cannam@95 209
cannam@95 210 void XSIMD(codelet_t1bv_7) (planner *p) {
cannam@95 211 X(kdft_dit_register) (p, t1bv_7, &desc);
cannam@95 212 }
cannam@95 213 #endif /* HAVE_FMA */