annotate src/fftw-3.3.3/dft/simd/common/t1bv_15.c @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@95 22 /* Generated on Sun Nov 25 07:39:04 EST 2012 */
cannam@95 23
cannam@95 24 #include "codelet-dft.h"
cannam@95 25
cannam@95 26 #ifdef HAVE_FMA
cannam@95 27
cannam@95 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name t1bv_15 -include t1b.h -sign 1 */
cannam@95 29
cannam@95 30 /*
cannam@95 31 * This function contains 92 FP additions, 77 FP multiplications,
cannam@95 32 * (or, 50 additions, 35 multiplications, 42 fused multiply/add),
cannam@95 33 * 81 stack variables, 8 constants, and 30 memory accesses
cannam@95 34 */
cannam@95 35 #include "t1b.h"
cannam@95 36
cannam@95 37 static void t1bv_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 38 {
cannam@95 39 DVK(KP823639103, +0.823639103546331925877420039278190003029660514);
cannam@95 40 DVK(KP910592997, +0.910592997310029334643087372129977886038870291);
cannam@95 41 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@95 42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@95 43 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@95 44 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@95 45 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
cannam@95 46 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@95 47 {
cannam@95 48 INT m;
cannam@95 49 R *x;
cannam@95 50 x = ii;
cannam@95 51 for (m = mb, W = W + (mb * ((TWVL / VL) * 28)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 28), MAKE_VOLATILE_STRIDE(15, rs)) {
cannam@95 52 V Tq, Ty, Th, TV, TK, Ts, T1f, T7, Tu, TA, TC, Tj, Tk, T1g, Tf;
cannam@95 53 {
cannam@95 54 V T1, T4, T2, T9, Te;
cannam@95 55 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@95 56 T4 = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
cannam@95 57 T2 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@95 58 {
cannam@95 59 V T8, Tp, Tx, Tg;
cannam@95 60 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@95 61 Tp = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@95 62 Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@95 63 Tg = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
cannam@95 64 {
cannam@95 65 V Tb, Td, Tr, T6, Tt, Tz, TB, Ti;
cannam@95 66 {
cannam@95 67 V T5, T3, Ta, Tc;
cannam@95 68 Ta = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@95 69 Tc = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
cannam@95 70 T5 = BYTW(&(W[TWVL * 18]), T4);
cannam@95 71 T3 = BYTW(&(W[TWVL * 8]), T2);
cannam@95 72 T9 = BYTW(&(W[TWVL * 4]), T8);
cannam@95 73 Tq = BYTW(&(W[TWVL * 10]), Tp);
cannam@95 74 Ty = BYTW(&(W[TWVL * 16]), Tx);
cannam@95 75 Th = BYTW(&(W[TWVL * 22]), Tg);
cannam@95 76 Tb = BYTW(&(W[TWVL * 14]), Ta);
cannam@95 77 Td = BYTW(&(W[TWVL * 24]), Tc);
cannam@95 78 Tr = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
cannam@95 79 TV = VSUB(T3, T5);
cannam@95 80 T6 = VADD(T3, T5);
cannam@95 81 Tt = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@95 82 }
cannam@95 83 Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
cannam@95 84 TB = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@95 85 Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@95 86 Te = VADD(Tb, Td);
cannam@95 87 TK = VSUB(Tb, Td);
cannam@95 88 Ts = BYTW(&(W[TWVL * 20]), Tr);
cannam@95 89 T1f = VADD(T1, T6);
cannam@95 90 T7 = VFNMS(LDK(KP500000000), T6, T1);
cannam@95 91 Tu = BYTW(&(W[0]), Tt);
cannam@95 92 TA = BYTW(&(W[TWVL * 26]), Tz);
cannam@95 93 TC = BYTW(&(W[TWVL * 6]), TB);
cannam@95 94 Tj = BYTW(&(W[TWVL * 2]), Ti);
cannam@95 95 Tk = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@95 96 }
cannam@95 97 }
cannam@95 98 T1g = VADD(T9, Te);
cannam@95 99 Tf = VFNMS(LDK(KP500000000), Te, T9);
cannam@95 100 }
cannam@95 101 {
cannam@95 102 V Tv, TN, TD, TO, Tl;
cannam@95 103 Tv = VADD(Ts, Tu);
cannam@95 104 TN = VSUB(Ts, Tu);
cannam@95 105 TD = VADD(TA, TC);
cannam@95 106 TO = VSUB(TA, TC);
cannam@95 107 Tl = BYTW(&(W[TWVL * 12]), Tk);
cannam@95 108 {
cannam@95 109 V Tw, T1j, TX, TP, TE, T1k, TL, Tm;
cannam@95 110 Tw = VFNMS(LDK(KP500000000), Tv, Tq);
cannam@95 111 T1j = VADD(Tq, Tv);
cannam@95 112 TX = VADD(TN, TO);
cannam@95 113 TP = VSUB(TN, TO);
cannam@95 114 TE = VFNMS(LDK(KP500000000), TD, Ty);
cannam@95 115 T1k = VADD(Ty, TD);
cannam@95 116 TL = VSUB(Tj, Tl);
cannam@95 117 Tm = VADD(Tj, Tl);
cannam@95 118 {
cannam@95 119 V TT, TF, T1q, T1l, TW, TM, T1h, Tn;
cannam@95 120 TT = VSUB(Tw, TE);
cannam@95 121 TF = VADD(Tw, TE);
cannam@95 122 T1q = VSUB(T1j, T1k);
cannam@95 123 T1l = VADD(T1j, T1k);
cannam@95 124 TW = VADD(TK, TL);
cannam@95 125 TM = VSUB(TK, TL);
cannam@95 126 T1h = VADD(Th, Tm);
cannam@95 127 Tn = VFNMS(LDK(KP500000000), Tm, Th);
cannam@95 128 {
cannam@95 129 V T10, TY, T16, TQ, T1r, T1i, TS, To, TZ, T1e;
cannam@95 130 T10 = VSUB(TW, TX);
cannam@95 131 TY = VADD(TW, TX);
cannam@95 132 T16 = VFNMS(LDK(KP618033988), TM, TP);
cannam@95 133 TQ = VFMA(LDK(KP618033988), TP, TM);
cannam@95 134 T1r = VSUB(T1g, T1h);
cannam@95 135 T1i = VADD(T1g, T1h);
cannam@95 136 TS = VSUB(Tf, Tn);
cannam@95 137 To = VADD(Tf, Tn);
cannam@95 138 TZ = VFNMS(LDK(KP250000000), TY, TV);
cannam@95 139 T1e = VMUL(LDK(KP866025403), VADD(TV, TY));
cannam@95 140 {
cannam@95 141 V T1u, T1s, T1o, T18, TU, TG, TI, T19, T11, T1n, T1m;
cannam@95 142 T1u = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1q, T1r));
cannam@95 143 T1s = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1r, T1q));
cannam@95 144 T1m = VADD(T1i, T1l);
cannam@95 145 T1o = VSUB(T1i, T1l);
cannam@95 146 T18 = VFNMS(LDK(KP618033988), TS, TT);
cannam@95 147 TU = VFMA(LDK(KP618033988), TT, TS);
cannam@95 148 TG = VADD(To, TF);
cannam@95 149 TI = VSUB(To, TF);
cannam@95 150 T19 = VFNMS(LDK(KP559016994), T10, TZ);
cannam@95 151 T11 = VFMA(LDK(KP559016994), T10, TZ);
cannam@95 152 ST(&(x[0]), VADD(T1f, T1m), ms, &(x[0]));
cannam@95 153 T1n = VFNMS(LDK(KP250000000), T1m, T1f);
cannam@95 154 {
cannam@95 155 V T1a, T1c, T14, T12, T1p, T1t, T15, TJ, T1d, TH;
cannam@95 156 T1d = VADD(T7, TG);
cannam@95 157 TH = VFNMS(LDK(KP250000000), TG, T7);
cannam@95 158 T1a = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T19, T18));
cannam@95 159 T1c = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T19, T18));
cannam@95 160 T14 = VMUL(LDK(KP951056516), VFNMS(LDK(KP910592997), T11, TU));
cannam@95 161 T12 = VMUL(LDK(KP951056516), VFMA(LDK(KP910592997), T11, TU));
cannam@95 162 T1p = VFNMS(LDK(KP559016994), T1o, T1n);
cannam@95 163 T1t = VFMA(LDK(KP559016994), T1o, T1n);
cannam@95 164 ST(&(x[WS(rs, 10)]), VFMAI(T1e, T1d), ms, &(x[0]));
cannam@95 165 ST(&(x[WS(rs, 5)]), VFNMSI(T1e, T1d), ms, &(x[WS(rs, 1)]));
cannam@95 166 T15 = VFNMS(LDK(KP559016994), TI, TH);
cannam@95 167 TJ = VFMA(LDK(KP559016994), TI, TH);
cannam@95 168 {
cannam@95 169 V T17, T1b, T13, TR;
cannam@95 170 ST(&(x[WS(rs, 12)]), VFNMSI(T1s, T1p), ms, &(x[0]));
cannam@95 171 ST(&(x[WS(rs, 3)]), VFMAI(T1s, T1p), ms, &(x[WS(rs, 1)]));
cannam@95 172 ST(&(x[WS(rs, 9)]), VFNMSI(T1u, T1t), ms, &(x[WS(rs, 1)]));
cannam@95 173 ST(&(x[WS(rs, 6)]), VFMAI(T1u, T1t), ms, &(x[0]));
cannam@95 174 T17 = VFNMS(LDK(KP823639103), T16, T15);
cannam@95 175 T1b = VFMA(LDK(KP823639103), T16, T15);
cannam@95 176 T13 = VFMA(LDK(KP823639103), TQ, TJ);
cannam@95 177 TR = VFNMS(LDK(KP823639103), TQ, TJ);
cannam@95 178 ST(&(x[WS(rs, 13)]), VFMAI(T1a, T17), ms, &(x[WS(rs, 1)]));
cannam@95 179 ST(&(x[WS(rs, 2)]), VFNMSI(T1a, T17), ms, &(x[0]));
cannam@95 180 ST(&(x[WS(rs, 8)]), VFMAI(T1c, T1b), ms, &(x[0]));
cannam@95 181 ST(&(x[WS(rs, 7)]), VFNMSI(T1c, T1b), ms, &(x[WS(rs, 1)]));
cannam@95 182 ST(&(x[WS(rs, 11)]), VFMAI(T14, T13), ms, &(x[WS(rs, 1)]));
cannam@95 183 ST(&(x[WS(rs, 4)]), VFNMSI(T14, T13), ms, &(x[0]));
cannam@95 184 ST(&(x[WS(rs, 14)]), VFNMSI(T12, TR), ms, &(x[0]));
cannam@95 185 ST(&(x[WS(rs, 1)]), VFMAI(T12, TR), ms, &(x[WS(rs, 1)]));
cannam@95 186 }
cannam@95 187 }
cannam@95 188 }
cannam@95 189 }
cannam@95 190 }
cannam@95 191 }
cannam@95 192 }
cannam@95 193 }
cannam@95 194 }
cannam@95 195 VLEAVE();
cannam@95 196 }
cannam@95 197
cannam@95 198 static const tw_instr twinstr[] = {
cannam@95 199 VTW(0, 1),
cannam@95 200 VTW(0, 2),
cannam@95 201 VTW(0, 3),
cannam@95 202 VTW(0, 4),
cannam@95 203 VTW(0, 5),
cannam@95 204 VTW(0, 6),
cannam@95 205 VTW(0, 7),
cannam@95 206 VTW(0, 8),
cannam@95 207 VTW(0, 9),
cannam@95 208 VTW(0, 10),
cannam@95 209 VTW(0, 11),
cannam@95 210 VTW(0, 12),
cannam@95 211 VTW(0, 13),
cannam@95 212 VTW(0, 14),
cannam@95 213 {TW_NEXT, VL, 0}
cannam@95 214 };
cannam@95 215
cannam@95 216 static const ct_desc desc = { 15, XSIMD_STRING("t1bv_15"), twinstr, &GENUS, {50, 35, 42, 0}, 0, 0, 0 };
cannam@95 217
cannam@95 218 void XSIMD(codelet_t1bv_15) (planner *p) {
cannam@95 219 X(kdft_dit_register) (p, t1bv_15, &desc);
cannam@95 220 }
cannam@95 221 #else /* HAVE_FMA */
cannam@95 222
cannam@95 223 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 15 -name t1bv_15 -include t1b.h -sign 1 */
cannam@95 224
cannam@95 225 /*
cannam@95 226 * This function contains 92 FP additions, 53 FP multiplications,
cannam@95 227 * (or, 78 additions, 39 multiplications, 14 fused multiply/add),
cannam@95 228 * 52 stack variables, 10 constants, and 30 memory accesses
cannam@95 229 */
cannam@95 230 #include "t1b.h"
cannam@95 231
cannam@95 232 static void t1bv_15(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 233 {
cannam@95 234 DVK(KP216506350, +0.216506350946109661690930792688234045867850657);
cannam@95 235 DVK(KP484122918, +0.484122918275927110647408174972799951354115213);
cannam@95 236 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@95 237 DVK(KP509036960, +0.509036960455127183450980863393907648510733164);
cannam@95 238 DVK(KP823639103, +0.823639103546331925877420039278190003029660514);
cannam@95 239 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@95 240 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
cannam@95 241 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@95 242 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@95 243 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@95 244 {
cannam@95 245 INT m;
cannam@95 246 R *x;
cannam@95 247 x = ii;
cannam@95 248 for (m = mb, W = W + (mb * ((TWVL / VL) * 28)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 28), MAKE_VOLATILE_STRIDE(15, rs)) {
cannam@95 249 V Ts, TV, T1f, TZ, T10, Tb, Tm, Tt, T1j, T1k, T1l, TI, TM, TR, Tz;
cannam@95 250 V TD, TQ, T1g, T1h, T1i;
cannam@95 251 {
cannam@95 252 V TT, Tr, Tp, Tq, To, TU;
cannam@95 253 TT = LD(&(x[0]), ms, &(x[0]));
cannam@95 254 Tq = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
cannam@95 255 Tr = BYTW(&(W[TWVL * 18]), Tq);
cannam@95 256 To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@95 257 Tp = BYTW(&(W[TWVL * 8]), To);
cannam@95 258 Ts = VSUB(Tp, Tr);
cannam@95 259 TU = VADD(Tp, Tr);
cannam@95 260 TV = VFNMS(LDK(KP500000000), TU, TT);
cannam@95 261 T1f = VADD(TT, TU);
cannam@95 262 }
cannam@95 263 {
cannam@95 264 V Tx, TG, TK, TB, T5, Ty, Tg, TH, Tl, TL, Ta, TC;
cannam@95 265 {
cannam@95 266 V Tw, TF, TJ, TA;
cannam@95 267 Tw = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@95 268 Tx = BYTW(&(W[TWVL * 4]), Tw);
cannam@95 269 TF = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@95 270 TG = BYTW(&(W[TWVL * 10]), TF);
cannam@95 271 TJ = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@95 272 TK = BYTW(&(W[TWVL * 16]), TJ);
cannam@95 273 TA = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
cannam@95 274 TB = BYTW(&(W[TWVL * 22]), TA);
cannam@95 275 }
cannam@95 276 {
cannam@95 277 V T2, T4, T1, T3;
cannam@95 278 T1 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@95 279 T2 = BYTW(&(W[TWVL * 14]), T1);
cannam@95 280 T3 = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
cannam@95 281 T4 = BYTW(&(W[TWVL * 24]), T3);
cannam@95 282 T5 = VSUB(T2, T4);
cannam@95 283 Ty = VADD(T2, T4);
cannam@95 284 }
cannam@95 285 {
cannam@95 286 V Td, Tf, Tc, Te;
cannam@95 287 Tc = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
cannam@95 288 Td = BYTW(&(W[TWVL * 20]), Tc);
cannam@95 289 Te = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@95 290 Tf = BYTW(&(W[0]), Te);
cannam@95 291 Tg = VSUB(Td, Tf);
cannam@95 292 TH = VADD(Td, Tf);
cannam@95 293 }
cannam@95 294 {
cannam@95 295 V Ti, Tk, Th, Tj;
cannam@95 296 Th = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
cannam@95 297 Ti = BYTW(&(W[TWVL * 26]), Th);
cannam@95 298 Tj = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@95 299 Tk = BYTW(&(W[TWVL * 6]), Tj);
cannam@95 300 Tl = VSUB(Ti, Tk);
cannam@95 301 TL = VADD(Ti, Tk);
cannam@95 302 }
cannam@95 303 {
cannam@95 304 V T7, T9, T6, T8;
cannam@95 305 T6 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@95 306 T7 = BYTW(&(W[TWVL * 2]), T6);
cannam@95 307 T8 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@95 308 T9 = BYTW(&(W[TWVL * 12]), T8);
cannam@95 309 Ta = VSUB(T7, T9);
cannam@95 310 TC = VADD(T7, T9);
cannam@95 311 }
cannam@95 312 TZ = VSUB(T5, Ta);
cannam@95 313 T10 = VSUB(Tg, Tl);
cannam@95 314 Tb = VADD(T5, Ta);
cannam@95 315 Tm = VADD(Tg, Tl);
cannam@95 316 Tt = VADD(Tb, Tm);
cannam@95 317 T1j = VADD(TG, TH);
cannam@95 318 T1k = VADD(TK, TL);
cannam@95 319 T1l = VADD(T1j, T1k);
cannam@95 320 TI = VFNMS(LDK(KP500000000), TH, TG);
cannam@95 321 TM = VFNMS(LDK(KP500000000), TL, TK);
cannam@95 322 TR = VADD(TI, TM);
cannam@95 323 Tz = VFNMS(LDK(KP500000000), Ty, Tx);
cannam@95 324 TD = VFNMS(LDK(KP500000000), TC, TB);
cannam@95 325 TQ = VADD(Tz, TD);
cannam@95 326 T1g = VADD(Tx, Ty);
cannam@95 327 T1h = VADD(TB, TC);
cannam@95 328 T1i = VADD(T1g, T1h);
cannam@95 329 }
cannam@95 330 {
cannam@95 331 V T1o, T1m, T1n, T1s, T1t, T1q, T1r, T1u, T1p;
cannam@95 332 T1o = VMUL(LDK(KP559016994), VSUB(T1i, T1l));
cannam@95 333 T1m = VADD(T1i, T1l);
cannam@95 334 T1n = VFNMS(LDK(KP250000000), T1m, T1f);
cannam@95 335 T1q = VSUB(T1g, T1h);
cannam@95 336 T1r = VSUB(T1j, T1k);
cannam@95 337 T1s = VBYI(VFNMS(LDK(KP951056516), T1r, VMUL(LDK(KP587785252), T1q)));
cannam@95 338 T1t = VBYI(VFMA(LDK(KP951056516), T1q, VMUL(LDK(KP587785252), T1r)));
cannam@95 339 ST(&(x[0]), VADD(T1f, T1m), ms, &(x[0]));
cannam@95 340 T1u = VADD(T1o, T1n);
cannam@95 341 ST(&(x[WS(rs, 6)]), VADD(T1t, T1u), ms, &(x[0]));
cannam@95 342 ST(&(x[WS(rs, 9)]), VSUB(T1u, T1t), ms, &(x[WS(rs, 1)]));
cannam@95 343 T1p = VSUB(T1n, T1o);
cannam@95 344 ST(&(x[WS(rs, 3)]), VSUB(T1p, T1s), ms, &(x[WS(rs, 1)]));
cannam@95 345 ST(&(x[WS(rs, 12)]), VADD(T1s, T1p), ms, &(x[0]));
cannam@95 346 }
cannam@95 347 {
cannam@95 348 V T11, T18, T1e, TO, T16, Tv, T15, TY, T1d, T19, TE, TN;
cannam@95 349 T11 = VFMA(LDK(KP823639103), TZ, VMUL(LDK(KP509036960), T10));
cannam@95 350 T18 = VFNMS(LDK(KP823639103), T10, VMUL(LDK(KP509036960), TZ));
cannam@95 351 T1e = VBYI(VMUL(LDK(KP866025403), VADD(Ts, Tt)));
cannam@95 352 TE = VSUB(Tz, TD);
cannam@95 353 TN = VSUB(TI, TM);
cannam@95 354 TO = VFMA(LDK(KP951056516), TE, VMUL(LDK(KP587785252), TN));
cannam@95 355 T16 = VFNMS(LDK(KP951056516), TN, VMUL(LDK(KP587785252), TE));
cannam@95 356 {
cannam@95 357 V Tn, Tu, TS, TW, TX;
cannam@95 358 Tn = VMUL(LDK(KP484122918), VSUB(Tb, Tm));
cannam@95 359 Tu = VFNMS(LDK(KP216506350), Tt, VMUL(LDK(KP866025403), Ts));
cannam@95 360 Tv = VADD(Tn, Tu);
cannam@95 361 T15 = VSUB(Tn, Tu);
cannam@95 362 TS = VMUL(LDK(KP559016994), VSUB(TQ, TR));
cannam@95 363 TW = VADD(TQ, TR);
cannam@95 364 TX = VFNMS(LDK(KP250000000), TW, TV);
cannam@95 365 TY = VADD(TS, TX);
cannam@95 366 T1d = VADD(TV, TW);
cannam@95 367 T19 = VSUB(TX, TS);
cannam@95 368 }
cannam@95 369 {
cannam@95 370 V TP, T12, T1b, T1c;
cannam@95 371 ST(&(x[WS(rs, 5)]), VSUB(T1d, T1e), ms, &(x[WS(rs, 1)]));
cannam@95 372 ST(&(x[WS(rs, 10)]), VADD(T1e, T1d), ms, &(x[0]));
cannam@95 373 TP = VBYI(VADD(Tv, TO));
cannam@95 374 T12 = VSUB(TY, T11);
cannam@95 375 ST(&(x[WS(rs, 1)]), VADD(TP, T12), ms, &(x[WS(rs, 1)]));
cannam@95 376 ST(&(x[WS(rs, 14)]), VSUB(T12, TP), ms, &(x[0]));
cannam@95 377 T1b = VBYI(VSUB(T16, T15));
cannam@95 378 T1c = VSUB(T19, T18);
cannam@95 379 ST(&(x[WS(rs, 7)]), VADD(T1b, T1c), ms, &(x[WS(rs, 1)]));
cannam@95 380 ST(&(x[WS(rs, 8)]), VSUB(T1c, T1b), ms, &(x[0]));
cannam@95 381 {
cannam@95 382 V T17, T1a, T13, T14;
cannam@95 383 T17 = VBYI(VADD(T15, T16));
cannam@95 384 T1a = VADD(T18, T19);
cannam@95 385 ST(&(x[WS(rs, 2)]), VADD(T17, T1a), ms, &(x[0]));
cannam@95 386 ST(&(x[WS(rs, 13)]), VSUB(T1a, T17), ms, &(x[WS(rs, 1)]));
cannam@95 387 T13 = VBYI(VSUB(Tv, TO));
cannam@95 388 T14 = VADD(T11, TY);
cannam@95 389 ST(&(x[WS(rs, 4)]), VADD(T13, T14), ms, &(x[0]));
cannam@95 390 ST(&(x[WS(rs, 11)]), VSUB(T14, T13), ms, &(x[WS(rs, 1)]));
cannam@95 391 }
cannam@95 392 }
cannam@95 393 }
cannam@95 394 }
cannam@95 395 }
cannam@95 396 VLEAVE();
cannam@95 397 }
cannam@95 398
cannam@95 399 static const tw_instr twinstr[] = {
cannam@95 400 VTW(0, 1),
cannam@95 401 VTW(0, 2),
cannam@95 402 VTW(0, 3),
cannam@95 403 VTW(0, 4),
cannam@95 404 VTW(0, 5),
cannam@95 405 VTW(0, 6),
cannam@95 406 VTW(0, 7),
cannam@95 407 VTW(0, 8),
cannam@95 408 VTW(0, 9),
cannam@95 409 VTW(0, 10),
cannam@95 410 VTW(0, 11),
cannam@95 411 VTW(0, 12),
cannam@95 412 VTW(0, 13),
cannam@95 413 VTW(0, 14),
cannam@95 414 {TW_NEXT, VL, 0}
cannam@95 415 };
cannam@95 416
cannam@95 417 static const ct_desc desc = { 15, XSIMD_STRING("t1bv_15"), twinstr, &GENUS, {78, 39, 14, 0}, 0, 0, 0 };
cannam@95 418
cannam@95 419 void XSIMD(codelet_t1bv_15) (planner *p) {
cannam@95 420 X(kdft_dit_register) (p, t1bv_15, &desc);
cannam@95 421 }
cannam@95 422 #endif /* HAVE_FMA */