annotate src/fftw-3.3.3/dft/simd/common/t1buv_6.c @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@95 22 /* Generated on Sun Nov 25 07:39:02 EST 2012 */
cannam@95 23
cannam@95 24 #include "codelet-dft.h"
cannam@95 25
cannam@95 26 #ifdef HAVE_FMA
cannam@95 27
cannam@95 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name t1buv_6 -include t1bu.h -sign 1 */
cannam@95 29
cannam@95 30 /*
cannam@95 31 * This function contains 23 FP additions, 18 FP multiplications,
cannam@95 32 * (or, 17 additions, 12 multiplications, 6 fused multiply/add),
cannam@95 33 * 27 stack variables, 2 constants, and 12 memory accesses
cannam@95 34 */
cannam@95 35 #include "t1bu.h"
cannam@95 36
cannam@95 37 static void t1buv_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 38 {
cannam@95 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@95 40 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@95 41 {
cannam@95 42 INT m;
cannam@95 43 R *x;
cannam@95 44 x = ii;
cannam@95 45 for (m = mb, W = W + (mb * ((TWVL / VL) * 10)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(6, rs)) {
cannam@95 46 V T1, T2, Ta, Tc, T5, T7;
cannam@95 47 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@95 48 T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@95 49 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@95 50 Tc = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@95 51 T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@95 52 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@95 53 {
cannam@95 54 V T3, Tb, Td, T6, T8;
cannam@95 55 T3 = BYTW(&(W[TWVL * 4]), T2);
cannam@95 56 Tb = BYTW(&(W[TWVL * 6]), Ta);
cannam@95 57 Td = BYTW(&(W[0]), Tc);
cannam@95 58 T6 = BYTW(&(W[TWVL * 2]), T5);
cannam@95 59 T8 = BYTW(&(W[TWVL * 8]), T7);
cannam@95 60 {
cannam@95 61 V Ti, T4, Tk, Te, Tj, T9;
cannam@95 62 Ti = VADD(T1, T3);
cannam@95 63 T4 = VSUB(T1, T3);
cannam@95 64 Tk = VADD(Tb, Td);
cannam@95 65 Te = VSUB(Tb, Td);
cannam@95 66 Tj = VADD(T6, T8);
cannam@95 67 T9 = VSUB(T6, T8);
cannam@95 68 {
cannam@95 69 V Tl, Tn, Tf, Th, Tm, Tg;
cannam@95 70 Tl = VADD(Tj, Tk);
cannam@95 71 Tn = VMUL(LDK(KP866025403), VSUB(Tj, Tk));
cannam@95 72 Tf = VADD(T9, Te);
cannam@95 73 Th = VMUL(LDK(KP866025403), VSUB(T9, Te));
cannam@95 74 ST(&(x[0]), VADD(Ti, Tl), ms, &(x[0]));
cannam@95 75 Tm = VFNMS(LDK(KP500000000), Tl, Ti);
cannam@95 76 ST(&(x[WS(rs, 3)]), VADD(T4, Tf), ms, &(x[WS(rs, 1)]));
cannam@95 77 Tg = VFNMS(LDK(KP500000000), Tf, T4);
cannam@95 78 ST(&(x[WS(rs, 4)]), VFMAI(Tn, Tm), ms, &(x[0]));
cannam@95 79 ST(&(x[WS(rs, 2)]), VFNMSI(Tn, Tm), ms, &(x[0]));
cannam@95 80 ST(&(x[WS(rs, 5)]), VFNMSI(Th, Tg), ms, &(x[WS(rs, 1)]));
cannam@95 81 ST(&(x[WS(rs, 1)]), VFMAI(Th, Tg), ms, &(x[WS(rs, 1)]));
cannam@95 82 }
cannam@95 83 }
cannam@95 84 }
cannam@95 85 }
cannam@95 86 }
cannam@95 87 VLEAVE();
cannam@95 88 }
cannam@95 89
cannam@95 90 static const tw_instr twinstr[] = {
cannam@95 91 VTW(0, 1),
cannam@95 92 VTW(0, 2),
cannam@95 93 VTW(0, 3),
cannam@95 94 VTW(0, 4),
cannam@95 95 VTW(0, 5),
cannam@95 96 {TW_NEXT, VL, 0}
cannam@95 97 };
cannam@95 98
cannam@95 99 static const ct_desc desc = { 6, XSIMD_STRING("t1buv_6"), twinstr, &GENUS, {17, 12, 6, 0}, 0, 0, 0 };
cannam@95 100
cannam@95 101 void XSIMD(codelet_t1buv_6) (planner *p) {
cannam@95 102 X(kdft_dit_register) (p, t1buv_6, &desc);
cannam@95 103 }
cannam@95 104 #else /* HAVE_FMA */
cannam@95 105
cannam@95 106 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name t1buv_6 -include t1bu.h -sign 1 */
cannam@95 107
cannam@95 108 /*
cannam@95 109 * This function contains 23 FP additions, 14 FP multiplications,
cannam@95 110 * (or, 21 additions, 12 multiplications, 2 fused multiply/add),
cannam@95 111 * 19 stack variables, 2 constants, and 12 memory accesses
cannam@95 112 */
cannam@95 113 #include "t1bu.h"
cannam@95 114
cannam@95 115 static void t1buv_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@95 116 {
cannam@95 117 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@95 118 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@95 119 {
cannam@95 120 INT m;
cannam@95 121 R *x;
cannam@95 122 x = ii;
cannam@95 123 for (m = mb, W = W + (mb * ((TWVL / VL) * 10)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(6, rs)) {
cannam@95 124 V Tf, Ti, Ta, Tk, T5, Tj, Tc, Te, Td;
cannam@95 125 Tc = LD(&(x[0]), ms, &(x[0]));
cannam@95 126 Td = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@95 127 Te = BYTW(&(W[TWVL * 4]), Td);
cannam@95 128 Tf = VSUB(Tc, Te);
cannam@95 129 Ti = VADD(Tc, Te);
cannam@95 130 {
cannam@95 131 V T7, T9, T6, T8;
cannam@95 132 T6 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@95 133 T7 = BYTW(&(W[TWVL * 6]), T6);
cannam@95 134 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@95 135 T9 = BYTW(&(W[0]), T8);
cannam@95 136 Ta = VSUB(T7, T9);
cannam@95 137 Tk = VADD(T7, T9);
cannam@95 138 }
cannam@95 139 {
cannam@95 140 V T2, T4, T1, T3;
cannam@95 141 T1 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@95 142 T2 = BYTW(&(W[TWVL * 2]), T1);
cannam@95 143 T3 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@95 144 T4 = BYTW(&(W[TWVL * 8]), T3);
cannam@95 145 T5 = VSUB(T2, T4);
cannam@95 146 Tj = VADD(T2, T4);
cannam@95 147 }
cannam@95 148 {
cannam@95 149 V Tb, Tg, Th, Tn, Tl, Tm;
cannam@95 150 Tb = VBYI(VMUL(LDK(KP866025403), VSUB(T5, Ta)));
cannam@95 151 Tg = VADD(T5, Ta);
cannam@95 152 Th = VFNMS(LDK(KP500000000), Tg, Tf);
cannam@95 153 ST(&(x[WS(rs, 1)]), VADD(Tb, Th), ms, &(x[WS(rs, 1)]));
cannam@95 154 ST(&(x[WS(rs, 3)]), VADD(Tf, Tg), ms, &(x[WS(rs, 1)]));
cannam@95 155 ST(&(x[WS(rs, 5)]), VSUB(Th, Tb), ms, &(x[WS(rs, 1)]));
cannam@95 156 Tn = VBYI(VMUL(LDK(KP866025403), VSUB(Tj, Tk)));
cannam@95 157 Tl = VADD(Tj, Tk);
cannam@95 158 Tm = VFNMS(LDK(KP500000000), Tl, Ti);
cannam@95 159 ST(&(x[WS(rs, 2)]), VSUB(Tm, Tn), ms, &(x[0]));
cannam@95 160 ST(&(x[0]), VADD(Ti, Tl), ms, &(x[0]));
cannam@95 161 ST(&(x[WS(rs, 4)]), VADD(Tn, Tm), ms, &(x[0]));
cannam@95 162 }
cannam@95 163 }
cannam@95 164 }
cannam@95 165 VLEAVE();
cannam@95 166 }
cannam@95 167
cannam@95 168 static const tw_instr twinstr[] = {
cannam@95 169 VTW(0, 1),
cannam@95 170 VTW(0, 2),
cannam@95 171 VTW(0, 3),
cannam@95 172 VTW(0, 4),
cannam@95 173 VTW(0, 5),
cannam@95 174 {TW_NEXT, VL, 0}
cannam@95 175 };
cannam@95 176
cannam@95 177 static const ct_desc desc = { 6, XSIMD_STRING("t1buv_6"), twinstr, &GENUS, {21, 12, 2, 0}, 0, 0, 0 };
cannam@95 178
cannam@95 179 void XSIMD(codelet_t1buv_6) (planner *p) {
cannam@95 180 X(kdft_dit_register) (p, t1buv_6, &desc);
cannam@95 181 }
cannam@95 182 #endif /* HAVE_FMA */