annotate src/fftw-3.3.3/dft/indirect-transpose.c @ 95:89f5e221ed7b

Add FFTW3
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
rev   line source
cannam@95 1 /*
cannam@95 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
cannam@95 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
cannam@95 4 *
cannam@95 5 * This program is free software; you can redistribute it and/or modify
cannam@95 6 * it under the terms of the GNU General Public License as published by
cannam@95 7 * the Free Software Foundation; either version 2 of the License, or
cannam@95 8 * (at your option) any later version.
cannam@95 9 *
cannam@95 10 * This program is distributed in the hope that it will be useful,
cannam@95 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@95 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@95 13 * GNU General Public License for more details.
cannam@95 14 *
cannam@95 15 * You should have received a copy of the GNU General Public License
cannam@95 16 * along with this program; if not, write to the Free Software
cannam@95 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@95 18 *
cannam@95 19 */
cannam@95 20
cannam@95 21 /* solvers/plans for vectors of DFTs corresponding to the columns
cannam@95 22 of a matrix: first transpose the matrix so that the DFTs are
cannam@95 23 contiguous, then do DFTs with transposed output. In particular,
cannam@95 24 we restrict ourselves to the case of a square transpose (or a
cannam@95 25 sequence thereof). */
cannam@95 26
cannam@95 27 #include "dft.h"
cannam@95 28
cannam@95 29 typedef solver S;
cannam@95 30
cannam@95 31 typedef struct {
cannam@95 32 plan_dft super;
cannam@95 33 INT vl, ivs, ovs;
cannam@95 34 plan *cldtrans, *cld, *cldrest;
cannam@95 35 } P;
cannam@95 36
cannam@95 37 /* initial transpose is out-of-place from input to output */
cannam@95 38 static void apply_op(const plan *ego_, R *ri, R *ii, R *ro, R *io)
cannam@95 39 {
cannam@95 40 const P *ego = (const P *) ego_;
cannam@95 41 INT vl = ego->vl, ivs = ego->ivs, ovs = ego->ovs, i;
cannam@95 42
cannam@95 43 for (i = 0; i < vl; ++i) {
cannam@95 44 {
cannam@95 45 plan_dft *cldtrans = (plan_dft *) ego->cldtrans;
cannam@95 46 cldtrans->apply(ego->cldtrans, ri, ii, ro, io);
cannam@95 47 }
cannam@95 48 {
cannam@95 49 plan_dft *cld = (plan_dft *) ego->cld;
cannam@95 50 cld->apply(ego->cld, ro, io, ro, io);
cannam@95 51 }
cannam@95 52 ri += ivs; ii += ivs;
cannam@95 53 ro += ovs; io += ovs;
cannam@95 54 }
cannam@95 55 {
cannam@95 56 plan_dft *cldrest = (plan_dft *) ego->cldrest;
cannam@95 57 cldrest->apply(ego->cldrest, ri, ii, ro, io);
cannam@95 58 }
cannam@95 59 }
cannam@95 60
cannam@95 61 static void destroy(plan *ego_)
cannam@95 62 {
cannam@95 63 P *ego = (P *) ego_;
cannam@95 64 X(plan_destroy_internal)(ego->cldrest);
cannam@95 65 X(plan_destroy_internal)(ego->cld);
cannam@95 66 X(plan_destroy_internal)(ego->cldtrans);
cannam@95 67 }
cannam@95 68
cannam@95 69 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@95 70 {
cannam@95 71 P *ego = (P *) ego_;
cannam@95 72 X(plan_awake)(ego->cldtrans, wakefulness);
cannam@95 73 X(plan_awake)(ego->cld, wakefulness);
cannam@95 74 X(plan_awake)(ego->cldrest, wakefulness);
cannam@95 75 }
cannam@95 76
cannam@95 77 static void print(const plan *ego_, printer *p)
cannam@95 78 {
cannam@95 79 const P *ego = (const P *) ego_;
cannam@95 80 p->print(p, "(indirect-transpose%v%(%p%)%(%p%)%(%p%))",
cannam@95 81 ego->vl, ego->cldtrans, ego->cld, ego->cldrest);
cannam@95 82 }
cannam@95 83
cannam@95 84 static int pickdim(const tensor *vs, const tensor *s, int *pdim0, int *pdim1)
cannam@95 85 {
cannam@95 86 int dim0, dim1;
cannam@95 87 *pdim0 = *pdim1 = -1;
cannam@95 88 for (dim0 = 0; dim0 < vs->rnk; ++dim0)
cannam@95 89 for (dim1 = 0; dim1 < s->rnk; ++dim1)
cannam@95 90 if (vs->dims[dim0].n * X(iabs)(vs->dims[dim0].is) <= X(iabs)(s->dims[dim1].is)
cannam@95 91 && vs->dims[dim0].n >= s->dims[dim1].n
cannam@95 92 && (*pdim0 == -1
cannam@95 93 || (X(iabs)(vs->dims[dim0].is) <= X(iabs)(vs->dims[*pdim0].is)
cannam@95 94 && X(iabs)(s->dims[dim1].is) >= X(iabs)(s->dims[*pdim1].is)))) {
cannam@95 95 *pdim0 = dim0;
cannam@95 96 *pdim1 = dim1;
cannam@95 97 }
cannam@95 98 return (*pdim0 != -1 && *pdim1 != -1);
cannam@95 99 }
cannam@95 100
cannam@95 101 static int applicable0(const solver *ego_, const problem *p_,
cannam@95 102 const planner *plnr,
cannam@95 103 int *pdim0, int *pdim1)
cannam@95 104 {
cannam@95 105 const problem_dft *p = (const problem_dft *) p_;
cannam@95 106 UNUSED(ego_); UNUSED(plnr);
cannam@95 107
cannam@95 108 return (1
cannam@95 109 && FINITE_RNK(p->vecsz->rnk) && FINITE_RNK(p->sz->rnk)
cannam@95 110
cannam@95 111 /* FIXME: can/should we relax this constraint? */
cannam@95 112 && X(tensor_inplace_strides2)(p->vecsz, p->sz)
cannam@95 113
cannam@95 114 && pickdim(p->vecsz, p->sz, pdim0, pdim1)
cannam@95 115
cannam@95 116 /* output should not *already* include the transpose
cannam@95 117 (in which case we duplicate the regular indirect.c) */
cannam@95 118 && (p->sz->dims[*pdim1].os != p->vecsz->dims[*pdim0].is)
cannam@95 119 );
cannam@95 120 }
cannam@95 121
cannam@95 122 static int applicable(const solver *ego_, const problem *p_,
cannam@95 123 const planner *plnr,
cannam@95 124 int *pdim0, int *pdim1)
cannam@95 125 {
cannam@95 126 if (!applicable0(ego_, p_, plnr, pdim0, pdim1)) return 0;
cannam@95 127 {
cannam@95 128 const problem_dft *p = (const problem_dft *) p_;
cannam@95 129 INT u = p->ri == p->ii + 1 || p->ii == p->ri + 1 ? (INT)2 : (INT)1;
cannam@95 130
cannam@95 131 /* UGLY if does not result in contiguous transforms or
cannam@95 132 transforms of contiguous vectors (since the latter at
cannam@95 133 least have efficient transpositions) */
cannam@95 134 if (NO_UGLYP(plnr)
cannam@95 135 && p->vecsz->dims[*pdim0].is != u
cannam@95 136 && !(p->vecsz->rnk == 2
cannam@95 137 && p->vecsz->dims[1-*pdim0].is == u
cannam@95 138 && p->vecsz->dims[*pdim0].is
cannam@95 139 == u * p->vecsz->dims[1-*pdim0].n))
cannam@95 140 return 0;
cannam@95 141
cannam@95 142 if (NO_INDIRECT_OP_P(plnr) && p->ri != p->ro) return 0;
cannam@95 143 }
cannam@95 144 return 1;
cannam@95 145 }
cannam@95 146
cannam@95 147 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
cannam@95 148 {
cannam@95 149 const problem_dft *p = (const problem_dft *) p_;
cannam@95 150 P *pln;
cannam@95 151 plan *cld = 0, *cldtrans = 0, *cldrest = 0;
cannam@95 152 int pdim0, pdim1;
cannam@95 153 tensor *ts, *tv;
cannam@95 154 INT vl, ivs, ovs;
cannam@95 155 R *rit, *iit, *rot, *iot;
cannam@95 156
cannam@95 157 static const plan_adt padt = {
cannam@95 158 X(dft_solve), awake, print, destroy
cannam@95 159 };
cannam@95 160
cannam@95 161 if (!applicable(ego_, p_, plnr, &pdim0, &pdim1))
cannam@95 162 return (plan *) 0;
cannam@95 163
cannam@95 164 vl = p->vecsz->dims[pdim0].n / p->sz->dims[pdim1].n;
cannam@95 165 A(vl >= 1);
cannam@95 166 ivs = p->sz->dims[pdim1].n * p->vecsz->dims[pdim0].is;
cannam@95 167 ovs = p->sz->dims[pdim1].n * p->vecsz->dims[pdim0].os;
cannam@95 168 rit = TAINT(p->ri, vl == 1 ? 0 : ivs);
cannam@95 169 iit = TAINT(p->ii, vl == 1 ? 0 : ivs);
cannam@95 170 rot = TAINT(p->ro, vl == 1 ? 0 : ovs);
cannam@95 171 iot = TAINT(p->io, vl == 1 ? 0 : ovs);
cannam@95 172
cannam@95 173 ts = X(tensor_copy_inplace)(p->sz, INPLACE_IS);
cannam@95 174 ts->dims[pdim1].os = p->vecsz->dims[pdim0].is;
cannam@95 175 tv = X(tensor_copy_inplace)(p->vecsz, INPLACE_IS);
cannam@95 176 tv->dims[pdim0].os = p->sz->dims[pdim1].is;
cannam@95 177 tv->dims[pdim0].n = p->sz->dims[pdim1].n;
cannam@95 178 cldtrans = X(mkplan_d)(plnr,
cannam@95 179 X(mkproblem_dft_d)(X(mktensor_0d)(),
cannam@95 180 X(tensor_append)(tv, ts),
cannam@95 181 rit, iit,
cannam@95 182 rot, iot));
cannam@95 183 X(tensor_destroy2)(ts, tv);
cannam@95 184 if (!cldtrans) goto nada;
cannam@95 185
cannam@95 186 ts = X(tensor_copy)(p->sz);
cannam@95 187 ts->dims[pdim1].is = p->vecsz->dims[pdim0].is;
cannam@95 188 tv = X(tensor_copy)(p->vecsz);
cannam@95 189 tv->dims[pdim0].is = p->sz->dims[pdim1].is;
cannam@95 190 tv->dims[pdim0].n = p->sz->dims[pdim1].n;
cannam@95 191 cld = X(mkplan_d)(plnr, X(mkproblem_dft_d)(ts, tv,
cannam@95 192 rot, iot,
cannam@95 193 rot, iot));
cannam@95 194 if (!cld) goto nada;
cannam@95 195
cannam@95 196 tv = X(tensor_copy)(p->vecsz);
cannam@95 197 tv->dims[pdim0].n -= vl * p->sz->dims[pdim1].n;
cannam@95 198 cldrest = X(mkplan_d)(plnr, X(mkproblem_dft_d)(X(tensor_copy)(p->sz), tv,
cannam@95 199 p->ri + ivs * vl,
cannam@95 200 p->ii + ivs * vl,
cannam@95 201 p->ro + ovs * vl,
cannam@95 202 p->io + ovs * vl));
cannam@95 203 if (!cldrest) goto nada;
cannam@95 204
cannam@95 205 pln = MKPLAN_DFT(P, &padt, apply_op);
cannam@95 206 pln->cldtrans = cldtrans;
cannam@95 207 pln->cld = cld;
cannam@95 208 pln->cldrest = cldrest;
cannam@95 209 pln->vl = vl;
cannam@95 210 pln->ivs = ivs;
cannam@95 211 pln->ovs = ovs;
cannam@95 212 X(ops_cpy)(&cldrest->ops, &pln->super.super.ops);
cannam@95 213 X(ops_madd2)(vl, &cld->ops, &pln->super.super.ops);
cannam@95 214 X(ops_madd2)(vl, &cldtrans->ops, &pln->super.super.ops);
cannam@95 215 return &(pln->super.super);
cannam@95 216
cannam@95 217 nada:
cannam@95 218 X(plan_destroy_internal)(cldrest);
cannam@95 219 X(plan_destroy_internal)(cld);
cannam@95 220 X(plan_destroy_internal)(cldtrans);
cannam@95 221 return (plan *)0;
cannam@95 222 }
cannam@95 223
cannam@95 224 static solver *mksolver(void)
cannam@95 225 {
cannam@95 226 static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
cannam@95 227 S *slv = MKSOLVER(S, &sadt);
cannam@95 228 return slv;
cannam@95 229 }
cannam@95 230
cannam@95 231 void X(dft_indirect_transpose_register)(planner *p)
cannam@95 232 {
cannam@95 233 REGISTER_SOLVER(p, mksolver());
cannam@95 234 }