annotate src/opus-1.3/silk/A2NLSF.c @ 69:7aeed7906520

Add Opus sources and macOS builds
author Chris Cannam
date Wed, 23 Jan 2019 13:48:08 +0000
parents
children
rev   line source
Chris@69 1 /***********************************************************************
Chris@69 2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
Chris@69 3 Redistribution and use in source and binary forms, with or without
Chris@69 4 modification, are permitted provided that the following conditions
Chris@69 5 are met:
Chris@69 6 - Redistributions of source code must retain the above copyright notice,
Chris@69 7 this list of conditions and the following disclaimer.
Chris@69 8 - Redistributions in binary form must reproduce the above copyright
Chris@69 9 notice, this list of conditions and the following disclaimer in the
Chris@69 10 documentation and/or other materials provided with the distribution.
Chris@69 11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
Chris@69 12 names of specific contributors, may be used to endorse or promote
Chris@69 13 products derived from this software without specific prior written
Chris@69 14 permission.
Chris@69 15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
Chris@69 16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
Chris@69 17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
Chris@69 18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
Chris@69 19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
Chris@69 20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
Chris@69 21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
Chris@69 22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
Chris@69 23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
Chris@69 24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
Chris@69 25 POSSIBILITY OF SUCH DAMAGE.
Chris@69 26 ***********************************************************************/
Chris@69 27
Chris@69 28 /* Conversion between prediction filter coefficients and NLSFs */
Chris@69 29 /* Requires the order to be an even number */
Chris@69 30 /* A piecewise linear approximation maps LSF <-> cos(LSF) */
Chris@69 31 /* Therefore the result is not accurate NLSFs, but the two */
Chris@69 32 /* functions are accurate inverses of each other */
Chris@69 33
Chris@69 34 #ifdef HAVE_CONFIG_H
Chris@69 35 #include "config.h"
Chris@69 36 #endif
Chris@69 37
Chris@69 38 #include "SigProc_FIX.h"
Chris@69 39 #include "tables.h"
Chris@69 40
Chris@69 41 /* Number of binary divisions, when not in low complexity mode */
Chris@69 42 #define BIN_DIV_STEPS_A2NLSF_FIX 3 /* must be no higher than 16 - log2( LSF_COS_TAB_SZ_FIX ) */
Chris@69 43 #define MAX_ITERATIONS_A2NLSF_FIX 16
Chris@69 44
Chris@69 45 /* Helper function for A2NLSF(..) */
Chris@69 46 /* Transforms polynomials from cos(n*f) to cos(f)^n */
Chris@69 47 static OPUS_INLINE void silk_A2NLSF_trans_poly(
Chris@69 48 opus_int32 *p, /* I/O Polynomial */
Chris@69 49 const opus_int dd /* I Polynomial order (= filter order / 2 ) */
Chris@69 50 )
Chris@69 51 {
Chris@69 52 opus_int k, n;
Chris@69 53
Chris@69 54 for( k = 2; k <= dd; k++ ) {
Chris@69 55 for( n = dd; n > k; n-- ) {
Chris@69 56 p[ n - 2 ] -= p[ n ];
Chris@69 57 }
Chris@69 58 p[ k - 2 ] -= silk_LSHIFT( p[ k ], 1 );
Chris@69 59 }
Chris@69 60 }
Chris@69 61 /* Helper function for A2NLSF(..) */
Chris@69 62 /* Polynomial evaluation */
Chris@69 63 static OPUS_INLINE opus_int32 silk_A2NLSF_eval_poly( /* return the polynomial evaluation, in Q16 */
Chris@69 64 opus_int32 *p, /* I Polynomial, Q16 */
Chris@69 65 const opus_int32 x, /* I Evaluation point, Q12 */
Chris@69 66 const opus_int dd /* I Order */
Chris@69 67 )
Chris@69 68 {
Chris@69 69 opus_int n;
Chris@69 70 opus_int32 x_Q16, y32;
Chris@69 71
Chris@69 72 y32 = p[ dd ]; /* Q16 */
Chris@69 73 x_Q16 = silk_LSHIFT( x, 4 );
Chris@69 74
Chris@69 75 if ( opus_likely( 8 == dd ) )
Chris@69 76 {
Chris@69 77 y32 = silk_SMLAWW( p[ 7 ], y32, x_Q16 );
Chris@69 78 y32 = silk_SMLAWW( p[ 6 ], y32, x_Q16 );
Chris@69 79 y32 = silk_SMLAWW( p[ 5 ], y32, x_Q16 );
Chris@69 80 y32 = silk_SMLAWW( p[ 4 ], y32, x_Q16 );
Chris@69 81 y32 = silk_SMLAWW( p[ 3 ], y32, x_Q16 );
Chris@69 82 y32 = silk_SMLAWW( p[ 2 ], y32, x_Q16 );
Chris@69 83 y32 = silk_SMLAWW( p[ 1 ], y32, x_Q16 );
Chris@69 84 y32 = silk_SMLAWW( p[ 0 ], y32, x_Q16 );
Chris@69 85 }
Chris@69 86 else
Chris@69 87 {
Chris@69 88 for( n = dd - 1; n >= 0; n-- ) {
Chris@69 89 y32 = silk_SMLAWW( p[ n ], y32, x_Q16 ); /* Q16 */
Chris@69 90 }
Chris@69 91 }
Chris@69 92 return y32;
Chris@69 93 }
Chris@69 94
Chris@69 95 static OPUS_INLINE void silk_A2NLSF_init(
Chris@69 96 const opus_int32 *a_Q16,
Chris@69 97 opus_int32 *P,
Chris@69 98 opus_int32 *Q,
Chris@69 99 const opus_int dd
Chris@69 100 )
Chris@69 101 {
Chris@69 102 opus_int k;
Chris@69 103
Chris@69 104 /* Convert filter coefs to even and odd polynomials */
Chris@69 105 P[dd] = silk_LSHIFT( 1, 16 );
Chris@69 106 Q[dd] = silk_LSHIFT( 1, 16 );
Chris@69 107 for( k = 0; k < dd; k++ ) {
Chris@69 108 P[ k ] = -a_Q16[ dd - k - 1 ] - a_Q16[ dd + k ]; /* Q16 */
Chris@69 109 Q[ k ] = -a_Q16[ dd - k - 1 ] + a_Q16[ dd + k ]; /* Q16 */
Chris@69 110 }
Chris@69 111
Chris@69 112 /* Divide out zeros as we have that for even filter orders, */
Chris@69 113 /* z = 1 is always a root in Q, and */
Chris@69 114 /* z = -1 is always a root in P */
Chris@69 115 for( k = dd; k > 0; k-- ) {
Chris@69 116 P[ k - 1 ] -= P[ k ];
Chris@69 117 Q[ k - 1 ] += Q[ k ];
Chris@69 118 }
Chris@69 119
Chris@69 120 /* Transform polynomials from cos(n*f) to cos(f)^n */
Chris@69 121 silk_A2NLSF_trans_poly( P, dd );
Chris@69 122 silk_A2NLSF_trans_poly( Q, dd );
Chris@69 123 }
Chris@69 124
Chris@69 125 /* Compute Normalized Line Spectral Frequencies (NLSFs) from whitening filter coefficients */
Chris@69 126 /* If not all roots are found, the a_Q16 coefficients are bandwidth expanded until convergence. */
Chris@69 127 void silk_A2NLSF(
Chris@69 128 opus_int16 *NLSF, /* O Normalized Line Spectral Frequencies in Q15 (0..2^15-1) [d] */
Chris@69 129 opus_int32 *a_Q16, /* I/O Monic whitening filter coefficients in Q16 [d] */
Chris@69 130 const opus_int d /* I Filter order (must be even) */
Chris@69 131 )
Chris@69 132 {
Chris@69 133 opus_int i, k, m, dd, root_ix, ffrac;
Chris@69 134 opus_int32 xlo, xhi, xmid;
Chris@69 135 opus_int32 ylo, yhi, ymid, thr;
Chris@69 136 opus_int32 nom, den;
Chris@69 137 opus_int32 P[ SILK_MAX_ORDER_LPC / 2 + 1 ];
Chris@69 138 opus_int32 Q[ SILK_MAX_ORDER_LPC / 2 + 1 ];
Chris@69 139 opus_int32 *PQ[ 2 ];
Chris@69 140 opus_int32 *p;
Chris@69 141
Chris@69 142 /* Store pointers to array */
Chris@69 143 PQ[ 0 ] = P;
Chris@69 144 PQ[ 1 ] = Q;
Chris@69 145
Chris@69 146 dd = silk_RSHIFT( d, 1 );
Chris@69 147
Chris@69 148 silk_A2NLSF_init( a_Q16, P, Q, dd );
Chris@69 149
Chris@69 150 /* Find roots, alternating between P and Q */
Chris@69 151 p = P; /* Pointer to polynomial */
Chris@69 152
Chris@69 153 xlo = silk_LSFCosTab_FIX_Q12[ 0 ]; /* Q12*/
Chris@69 154 ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
Chris@69 155
Chris@69 156 if( ylo < 0 ) {
Chris@69 157 /* Set the first NLSF to zero and move on to the next */
Chris@69 158 NLSF[ 0 ] = 0;
Chris@69 159 p = Q; /* Pointer to polynomial */
Chris@69 160 ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
Chris@69 161 root_ix = 1; /* Index of current root */
Chris@69 162 } else {
Chris@69 163 root_ix = 0; /* Index of current root */
Chris@69 164 }
Chris@69 165 k = 1; /* Loop counter */
Chris@69 166 i = 0; /* Counter for bandwidth expansions applied */
Chris@69 167 thr = 0;
Chris@69 168 while( 1 ) {
Chris@69 169 /* Evaluate polynomial */
Chris@69 170 xhi = silk_LSFCosTab_FIX_Q12[ k ]; /* Q12 */
Chris@69 171 yhi = silk_A2NLSF_eval_poly( p, xhi, dd );
Chris@69 172
Chris@69 173 /* Detect zero crossing */
Chris@69 174 if( ( ylo <= 0 && yhi >= thr ) || ( ylo >= 0 && yhi <= -thr ) ) {
Chris@69 175 if( yhi == 0 ) {
Chris@69 176 /* If the root lies exactly at the end of the current */
Chris@69 177 /* interval, look for the next root in the next interval */
Chris@69 178 thr = 1;
Chris@69 179 } else {
Chris@69 180 thr = 0;
Chris@69 181 }
Chris@69 182 /* Binary division */
Chris@69 183 ffrac = -256;
Chris@69 184 for( m = 0; m < BIN_DIV_STEPS_A2NLSF_FIX; m++ ) {
Chris@69 185 /* Evaluate polynomial */
Chris@69 186 xmid = silk_RSHIFT_ROUND( xlo + xhi, 1 );
Chris@69 187 ymid = silk_A2NLSF_eval_poly( p, xmid, dd );
Chris@69 188
Chris@69 189 /* Detect zero crossing */
Chris@69 190 if( ( ylo <= 0 && ymid >= 0 ) || ( ylo >= 0 && ymid <= 0 ) ) {
Chris@69 191 /* Reduce frequency */
Chris@69 192 xhi = xmid;
Chris@69 193 yhi = ymid;
Chris@69 194 } else {
Chris@69 195 /* Increase frequency */
Chris@69 196 xlo = xmid;
Chris@69 197 ylo = ymid;
Chris@69 198 ffrac = silk_ADD_RSHIFT( ffrac, 128, m );
Chris@69 199 }
Chris@69 200 }
Chris@69 201
Chris@69 202 /* Interpolate */
Chris@69 203 if( silk_abs( ylo ) < 65536 ) {
Chris@69 204 /* Avoid dividing by zero */
Chris@69 205 den = ylo - yhi;
Chris@69 206 nom = silk_LSHIFT( ylo, 8 - BIN_DIV_STEPS_A2NLSF_FIX ) + silk_RSHIFT( den, 1 );
Chris@69 207 if( den != 0 ) {
Chris@69 208 ffrac += silk_DIV32( nom, den );
Chris@69 209 }
Chris@69 210 } else {
Chris@69 211 /* No risk of dividing by zero because abs(ylo - yhi) >= abs(ylo) >= 65536 */
Chris@69 212 ffrac += silk_DIV32( ylo, silk_RSHIFT( ylo - yhi, 8 - BIN_DIV_STEPS_A2NLSF_FIX ) );
Chris@69 213 }
Chris@69 214 NLSF[ root_ix ] = (opus_int16)silk_min_32( silk_LSHIFT( (opus_int32)k, 8 ) + ffrac, silk_int16_MAX );
Chris@69 215
Chris@69 216 silk_assert( NLSF[ root_ix ] >= 0 );
Chris@69 217
Chris@69 218 root_ix++; /* Next root */
Chris@69 219 if( root_ix >= d ) {
Chris@69 220 /* Found all roots */
Chris@69 221 break;
Chris@69 222 }
Chris@69 223 /* Alternate pointer to polynomial */
Chris@69 224 p = PQ[ root_ix & 1 ];
Chris@69 225
Chris@69 226 /* Evaluate polynomial */
Chris@69 227 xlo = silk_LSFCosTab_FIX_Q12[ k - 1 ]; /* Q12*/
Chris@69 228 ylo = silk_LSHIFT( 1 - ( root_ix & 2 ), 12 );
Chris@69 229 } else {
Chris@69 230 /* Increment loop counter */
Chris@69 231 k++;
Chris@69 232 xlo = xhi;
Chris@69 233 ylo = yhi;
Chris@69 234 thr = 0;
Chris@69 235
Chris@69 236 if( k > LSF_COS_TAB_SZ_FIX ) {
Chris@69 237 i++;
Chris@69 238 if( i > MAX_ITERATIONS_A2NLSF_FIX ) {
Chris@69 239 /* Set NLSFs to white spectrum and exit */
Chris@69 240 NLSF[ 0 ] = (opus_int16)silk_DIV32_16( 1 << 15, d + 1 );
Chris@69 241 for( k = 1; k < d; k++ ) {
Chris@69 242 NLSF[ k ] = (opus_int16)silk_ADD16( NLSF[ k-1 ], NLSF[ 0 ] );
Chris@69 243 }
Chris@69 244 return;
Chris@69 245 }
Chris@69 246
Chris@69 247 /* Error: Apply progressively more bandwidth expansion and run again */
Chris@69 248 silk_bwexpander_32( a_Q16, d, 65536 - silk_LSHIFT( 1, i ) );
Chris@69 249
Chris@69 250 silk_A2NLSF_init( a_Q16, P, Q, dd );
Chris@69 251 p = P; /* Pointer to polynomial */
Chris@69 252 xlo = silk_LSFCosTab_FIX_Q12[ 0 ]; /* Q12*/
Chris@69 253 ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
Chris@69 254 if( ylo < 0 ) {
Chris@69 255 /* Set the first NLSF to zero and move on to the next */
Chris@69 256 NLSF[ 0 ] = 0;
Chris@69 257 p = Q; /* Pointer to polynomial */
Chris@69 258 ylo = silk_A2NLSF_eval_poly( p, xlo, dd );
Chris@69 259 root_ix = 1; /* Index of current root */
Chris@69 260 } else {
Chris@69 261 root_ix = 0; /* Index of current root */
Chris@69 262 }
Chris@69 263 k = 1; /* Reset loop counter */
Chris@69 264 }
Chris@69 265 }
Chris@69 266 }
Chris@69 267 }