annotate src/fftw-3.3.5/rdft/simd/common/hc2cfdftv_6.c @ 127:7867fa7e1b6b

Current fftw source
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:52:40 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-rdft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dit -name hc2cfdftv_6 -include hc2cfv.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 29 FP additions, 30 FP multiplications,
cannam@127 32 * (or, 17 additions, 18 multiplications, 12 fused multiply/add),
cannam@127 33 * 38 stack variables, 2 constants, and 12 memory accesses
cannam@127 34 */
cannam@127 35 #include "hc2cfv.h"
cannam@127 36
cannam@127 37 static void hc2cfdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 38 {
cannam@127 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 40 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@127 41 {
cannam@127 42 INT m;
cannam@127 43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
cannam@127 44 V T5, T6, T3, Tj, T4, T9, Te, Th, T1, T2, Ti, Tc, Td, Tb, Tg;
cannam@127 45 V T7, Ta, Tt, Tk, Tr, T8, Ts, Tf, Tx, Tu, To, Tl, Tw, Tv, Tn;
cannam@127 46 V Tm, Tz, Ty, Tp, Tq;
cannam@127 47 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@127 48 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@127 49 Ti = LDW(&(W[0]));
cannam@127 50 Tc = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@127 51 Td = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@127 52 Tb = LDW(&(W[TWVL * 8]));
cannam@127 53 Tg = LDW(&(W[TWVL * 6]));
cannam@127 54 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 55 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 56 T3 = VFMACONJ(T2, T1);
cannam@127 57 Tj = VZMULIJ(Ti, VFNMSCONJ(T2, T1));
cannam@127 58 T4 = LDW(&(W[TWVL * 4]));
cannam@127 59 T9 = LDW(&(W[TWVL * 2]));
cannam@127 60 Te = VZMULIJ(Tb, VFNMSCONJ(Td, Tc));
cannam@127 61 Th = VZMULJ(Tg, VFMACONJ(Td, Tc));
cannam@127 62 T7 = VZMULIJ(T4, VFNMSCONJ(T6, T5));
cannam@127 63 Ta = VZMULJ(T9, VFMACONJ(T6, T5));
cannam@127 64 Tt = VADD(Tj, Th);
cannam@127 65 Tk = VSUB(Th, Tj);
cannam@127 66 Tr = VADD(T3, T7);
cannam@127 67 T8 = VSUB(T3, T7);
cannam@127 68 Ts = VADD(Ta, Te);
cannam@127 69 Tf = VSUB(Ta, Te);
cannam@127 70 Tx = VMUL(LDK(KP866025403), VSUB(Tt, Ts));
cannam@127 71 Tu = VADD(Ts, Tt);
cannam@127 72 To = VMUL(LDK(KP866025403), VSUB(Tk, Tf));
cannam@127 73 Tl = VADD(Tf, Tk);
cannam@127 74 Tw = VFNMS(LDK(KP500000000), Tu, Tr);
cannam@127 75 Tv = VCONJ(VMUL(LDK(KP500000000), VADD(Tr, Tu)));
cannam@127 76 Tn = VFNMS(LDK(KP500000000), Tl, T8);
cannam@127 77 Tm = VMUL(LDK(KP500000000), VADD(T8, Tl));
cannam@127 78 Tz = VMUL(LDK(KP500000000), VFMAI(Tx, Tw));
cannam@127 79 Ty = VCONJ(VMUL(LDK(KP500000000), VFNMSI(Tx, Tw)));
cannam@127 80 ST(&(Rm[WS(rs, 2)]), Tv, -ms, &(Rm[0]));
cannam@127 81 Tp = VMUL(LDK(KP500000000), VFNMSI(To, Tn));
cannam@127 82 Tq = VCONJ(VMUL(LDK(KP500000000), VFMAI(To, Tn)));
cannam@127 83 ST(&(Rp[0]), Tm, ms, &(Rp[0]));
cannam@127 84 ST(&(Rp[WS(rs, 1)]), Tz, ms, &(Rp[WS(rs, 1)]));
cannam@127 85 ST(&(Rm[0]), Ty, -ms, &(Rm[0]));
cannam@127 86 ST(&(Rm[WS(rs, 1)]), Tq, -ms, &(Rm[WS(rs, 1)]));
cannam@127 87 ST(&(Rp[WS(rs, 2)]), Tp, ms, &(Rp[0]));
cannam@127 88 }
cannam@127 89 }
cannam@127 90 VLEAVE();
cannam@127 91 }
cannam@127 92
cannam@127 93 static const tw_instr twinstr[] = {
cannam@127 94 VTW(1, 1),
cannam@127 95 VTW(1, 2),
cannam@127 96 VTW(1, 3),
cannam@127 97 VTW(1, 4),
cannam@127 98 VTW(1, 5),
cannam@127 99 {TW_NEXT, VL, 0}
cannam@127 100 };
cannam@127 101
cannam@127 102 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cfdftv_6"), twinstr, &GENUS, {17, 18, 12, 0} };
cannam@127 103
cannam@127 104 void XSIMD(codelet_hc2cfdftv_6) (planner *p) {
cannam@127 105 X(khc2c_register) (p, hc2cfdftv_6, &desc, HC2C_VIA_DFT);
cannam@127 106 }
cannam@127 107 #else /* HAVE_FMA */
cannam@127 108
cannam@127 109 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dit -name hc2cfdftv_6 -include hc2cfv.h */
cannam@127 110
cannam@127 111 /*
cannam@127 112 * This function contains 29 FP additions, 20 FP multiplications,
cannam@127 113 * (or, 27 additions, 18 multiplications, 2 fused multiply/add),
cannam@127 114 * 42 stack variables, 3 constants, and 12 memory accesses
cannam@127 115 */
cannam@127 116 #include "hc2cfv.h"
cannam@127 117
cannam@127 118 static void hc2cfdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 119 {
cannam@127 120 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@127 121 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@127 122 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 123 {
cannam@127 124 INT m;
cannam@127 125 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
cannam@127 126 V Ta, Tu, Tn, Tw, Ti, Tv, T1, T8, Tg, Tf, T7, T3, Te, T6, T2;
cannam@127 127 V T4, T9, T5, Tk, Tm, Tj, Tl, Tc, Th, Tb, Td, Tr, Tp, Tq, To;
cannam@127 128 V Tt, Ts, TA, Ty, Tz, Tx, TC, TB;
cannam@127 129 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
cannam@127 130 T8 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
cannam@127 131 Tg = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
cannam@127 132 Te = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
cannam@127 133 Tf = VCONJ(Te);
cannam@127 134 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
cannam@127 135 T7 = VCONJ(T6);
cannam@127 136 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
cannam@127 137 T3 = VCONJ(T2);
cannam@127 138 T4 = VADD(T1, T3);
cannam@127 139 T5 = LDW(&(W[TWVL * 4]));
cannam@127 140 T9 = VZMULIJ(T5, VSUB(T7, T8));
cannam@127 141 Ta = VADD(T4, T9);
cannam@127 142 Tu = VSUB(T4, T9);
cannam@127 143 Tj = LDW(&(W[0]));
cannam@127 144 Tk = VZMULIJ(Tj, VSUB(T3, T1));
cannam@127 145 Tl = LDW(&(W[TWVL * 6]));
cannam@127 146 Tm = VZMULJ(Tl, VADD(Tf, Tg));
cannam@127 147 Tn = VADD(Tk, Tm);
cannam@127 148 Tw = VSUB(Tm, Tk);
cannam@127 149 Tb = LDW(&(W[TWVL * 2]));
cannam@127 150 Tc = VZMULJ(Tb, VADD(T7, T8));
cannam@127 151 Td = LDW(&(W[TWVL * 8]));
cannam@127 152 Th = VZMULIJ(Td, VSUB(Tf, Tg));
cannam@127 153 Ti = VADD(Tc, Th);
cannam@127 154 Tv = VSUB(Tc, Th);
cannam@127 155 Tr = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(Tn, Ti))));
cannam@127 156 To = VADD(Ti, Tn);
cannam@127 157 Tp = VMUL(LDK(KP500000000), VADD(Ta, To));
cannam@127 158 Tq = VFNMS(LDK(KP250000000), To, VMUL(LDK(KP500000000), Ta));
cannam@127 159 ST(&(Rp[0]), Tp, ms, &(Rp[0]));
cannam@127 160 Tt = VCONJ(VADD(Tq, Tr));
cannam@127 161 ST(&(Rm[WS(rs, 1)]), Tt, -ms, &(Rm[WS(rs, 1)]));
cannam@127 162 Ts = VSUB(Tq, Tr);
cannam@127 163 ST(&(Rp[WS(rs, 2)]), Ts, ms, &(Rp[0]));
cannam@127 164 TA = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(Tw, Tv))));
cannam@127 165 Tx = VADD(Tv, Tw);
cannam@127 166 Ty = VCONJ(VMUL(LDK(KP500000000), VADD(Tu, Tx)));
cannam@127 167 Tz = VFNMS(LDK(KP250000000), Tx, VMUL(LDK(KP500000000), Tu));
cannam@127 168 ST(&(Rm[WS(rs, 2)]), Ty, -ms, &(Rm[0]));
cannam@127 169 TC = VADD(Tz, TA);
cannam@127 170 ST(&(Rp[WS(rs, 1)]), TC, ms, &(Rp[WS(rs, 1)]));
cannam@127 171 TB = VCONJ(VSUB(Tz, TA));
cannam@127 172 ST(&(Rm[0]), TB, -ms, &(Rm[0]));
cannam@127 173 }
cannam@127 174 }
cannam@127 175 VLEAVE();
cannam@127 176 }
cannam@127 177
cannam@127 178 static const tw_instr twinstr[] = {
cannam@127 179 VTW(1, 1),
cannam@127 180 VTW(1, 2),
cannam@127 181 VTW(1, 3),
cannam@127 182 VTW(1, 4),
cannam@127 183 VTW(1, 5),
cannam@127 184 {TW_NEXT, VL, 0}
cannam@127 185 };
cannam@127 186
cannam@127 187 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cfdftv_6"), twinstr, &GENUS, {27, 18, 2, 0} };
cannam@127 188
cannam@127 189 void XSIMD(codelet_hc2cfdftv_6) (planner *p) {
cannam@127 190 X(khc2c_register) (p, hc2cfdftv_6, &desc, HC2C_VIA_DFT);
cannam@127 191 }
cannam@127 192 #endif /* HAVE_FMA */