annotate src/fftw-3.3.5/mpi/rdft2-serial.c @ 127:7867fa7e1b6b

Current fftw source
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* "MPI" DFTs where all of the data is on one processor...just
cannam@127 22 call through to serial API. */
cannam@127 23
cannam@127 24 #include "mpi-rdft2.h"
cannam@127 25 #include "rdft.h"
cannam@127 26
cannam@127 27 typedef struct {
cannam@127 28 plan_mpi_rdft2 super;
cannam@127 29 plan *cld;
cannam@127 30 INT vn;
cannam@127 31 } P;
cannam@127 32
cannam@127 33 static void apply_r2c(const plan *ego_, R *I, R *O)
cannam@127 34 {
cannam@127 35 const P *ego = (const P *) ego_;
cannam@127 36 plan_rdft2 *cld;
cannam@127 37 cld = (plan_rdft2 *) ego->cld;
cannam@127 38 cld->apply(ego->cld, I, I+ego->vn, O, O+1);
cannam@127 39 }
cannam@127 40
cannam@127 41 static void apply_c2r(const plan *ego_, R *I, R *O)
cannam@127 42 {
cannam@127 43 const P *ego = (const P *) ego_;
cannam@127 44 plan_rdft2 *cld;
cannam@127 45 cld = (plan_rdft2 *) ego->cld;
cannam@127 46 cld->apply(ego->cld, O, O+ego->vn, I, I+1);
cannam@127 47 }
cannam@127 48
cannam@127 49 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@127 50 {
cannam@127 51 P *ego = (P *) ego_;
cannam@127 52 X(plan_awake)(ego->cld, wakefulness);
cannam@127 53 }
cannam@127 54
cannam@127 55 static void destroy(plan *ego_)
cannam@127 56 {
cannam@127 57 P *ego = (P *) ego_;
cannam@127 58 X(plan_destroy_internal)(ego->cld);
cannam@127 59 }
cannam@127 60
cannam@127 61 static void print(const plan *ego_, printer *p)
cannam@127 62 {
cannam@127 63 const P *ego = (const P *) ego_;
cannam@127 64 p->print(p, "(mpi-rdft2-serial %(%p%))", ego->cld);
cannam@127 65 }
cannam@127 66
cannam@127 67 int XM(rdft2_serial_applicable)(const problem_mpi_rdft2 *p)
cannam@127 68 {
cannam@127 69 return (1
cannam@127 70 && p->flags == 0 /* TRANSPOSED/SCRAMBLED_IN/OUT not supported */
cannam@127 71 && ((XM(is_local)(p->sz, IB) && XM(is_local)(p->sz, OB))
cannam@127 72 || p->vn == 0));
cannam@127 73 }
cannam@127 74
cannam@127 75 static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
cannam@127 76 {
cannam@127 77 const problem_mpi_rdft2 *p = (const problem_mpi_rdft2 *) p_;
cannam@127 78 P *pln;
cannam@127 79 plan *cld;
cannam@127 80 int my_pe;
cannam@127 81 R *r0, *r1, *cr, *ci;
cannam@127 82 static const plan_adt padt = {
cannam@127 83 XM(rdft2_solve), awake, print, destroy
cannam@127 84 };
cannam@127 85
cannam@127 86 UNUSED(ego);
cannam@127 87
cannam@127 88 /* check whether applicable: */
cannam@127 89 if (!XM(rdft2_serial_applicable)(p))
cannam@127 90 return (plan *) 0;
cannam@127 91
cannam@127 92 if (p->kind == R2HC) {
cannam@127 93 r1 = (r0 = p->I) + p->vn;
cannam@127 94 ci = (cr = p->O) + 1;
cannam@127 95 }
cannam@127 96 else {
cannam@127 97 r1 = (r0 = p->O) + p->vn;
cannam@127 98 ci = (cr = p->I) + 1;
cannam@127 99 }
cannam@127 100
cannam@127 101 MPI_Comm_rank(p->comm, &my_pe);
cannam@127 102 if (my_pe == 0 && p->vn > 0) {
cannam@127 103 INT ivs = 1 + (p->kind == HC2R), ovs = 1 + (p->kind == R2HC);
cannam@127 104 int i, rnk = p->sz->rnk;
cannam@127 105 tensor *sz = X(mktensor)(p->sz->rnk);
cannam@127 106 sz->dims[rnk - 1].is = sz->dims[rnk - 1].os = 2 * p->vn;
cannam@127 107 sz->dims[rnk - 1].n = p->sz->dims[rnk - 1].n / 2 + 1;
cannam@127 108 for (i = rnk - 1; i > 0; --i) {
cannam@127 109 sz->dims[i - 1].is = sz->dims[i - 1].os =
cannam@127 110 sz->dims[i].is * sz->dims[i].n;
cannam@127 111 sz->dims[i - 1].n = p->sz->dims[i - 1].n;
cannam@127 112 }
cannam@127 113 sz->dims[rnk - 1].n = p->sz->dims[rnk - 1].n;
cannam@127 114
cannam@127 115 cld = X(mkplan_d)(plnr,
cannam@127 116 X(mkproblem_rdft2_d)(sz,
cannam@127 117 X(mktensor_1d)(p->vn,ivs,ovs),
cannam@127 118 r0, r1, cr, ci, p->kind));
cannam@127 119 }
cannam@127 120 else { /* idle process: make nop plan */
cannam@127 121 cld = X(mkplan_d)(plnr,
cannam@127 122 X(mkproblem_rdft2_d)(X(mktensor_0d)(),
cannam@127 123 X(mktensor_1d)(0,0,0),
cannam@127 124 cr, ci, cr, ci, HC2R));
cannam@127 125 }
cannam@127 126 if (XM(any_true)(!cld, p->comm)) return (plan *) 0;
cannam@127 127
cannam@127 128 pln = MKPLAN_MPI_RDFT2(P, &padt, p->kind == R2HC ? apply_r2c : apply_c2r);
cannam@127 129 pln->cld = cld;
cannam@127 130 pln->vn = p->vn;
cannam@127 131 X(ops_cpy)(&cld->ops, &pln->super.super.ops);
cannam@127 132 return &(pln->super.super);
cannam@127 133 }
cannam@127 134
cannam@127 135 static solver *mksolver(void)
cannam@127 136 {
cannam@127 137 static const solver_adt sadt = { PROBLEM_MPI_RDFT2, mkplan, 0 };
cannam@127 138 return MKSOLVER(solver, &sadt);
cannam@127 139 }
cannam@127 140
cannam@127 141 void XM(rdft2_serial_register)(planner *p)
cannam@127 142 {
cannam@127 143 REGISTER_SOLVER(p, mksolver());
cannam@127 144 }