annotate src/fftw-3.3.5/mpi/dft-serial.c @ 127:7867fa7e1b6b

Current fftw source
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* "MPI" DFTs where all of the data is on one processor...just
cannam@127 22 call through to serial API. */
cannam@127 23
cannam@127 24 #include "mpi-dft.h"
cannam@127 25 #include "dft.h"
cannam@127 26
cannam@127 27 typedef struct {
cannam@127 28 plan_mpi_dft super;
cannam@127 29 plan *cld;
cannam@127 30 INT roff, ioff;
cannam@127 31 } P;
cannam@127 32
cannam@127 33 static void apply(const plan *ego_, R *I, R *O)
cannam@127 34 {
cannam@127 35 const P *ego = (const P *) ego_;
cannam@127 36 plan_dft *cld;
cannam@127 37 INT roff = ego->roff, ioff = ego->ioff;
cannam@127 38 cld = (plan_dft *) ego->cld;
cannam@127 39 cld->apply(ego->cld, I+roff, I+ioff, O+roff, O+ioff);
cannam@127 40 }
cannam@127 41
cannam@127 42 static void awake(plan *ego_, enum wakefulness wakefulness)
cannam@127 43 {
cannam@127 44 P *ego = (P *) ego_;
cannam@127 45 X(plan_awake)(ego->cld, wakefulness);
cannam@127 46 }
cannam@127 47
cannam@127 48 static void destroy(plan *ego_)
cannam@127 49 {
cannam@127 50 P *ego = (P *) ego_;
cannam@127 51 X(plan_destroy_internal)(ego->cld);
cannam@127 52 }
cannam@127 53
cannam@127 54 static void print(const plan *ego_, printer *p)
cannam@127 55 {
cannam@127 56 const P *ego = (const P *) ego_;
cannam@127 57 p->print(p, "(mpi-dft-serial %(%p%))", ego->cld);
cannam@127 58 }
cannam@127 59
cannam@127 60 int XM(dft_serial_applicable)(const problem_mpi_dft *p)
cannam@127 61 {
cannam@127 62 return (1
cannam@127 63 && p->flags == 0 /* TRANSPOSED/SCRAMBLED_IN/OUT not supported */
cannam@127 64 && ((XM(is_local)(p->sz, IB) && XM(is_local)(p->sz, OB))
cannam@127 65 || p->vn == 0));
cannam@127 66 }
cannam@127 67
cannam@127 68 static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
cannam@127 69 {
cannam@127 70 const problem_mpi_dft *p = (const problem_mpi_dft *) p_;
cannam@127 71 P *pln;
cannam@127 72 plan *cld;
cannam@127 73 int my_pe;
cannam@127 74 R *ri, *ii, *ro, *io;
cannam@127 75 static const plan_adt padt = {
cannam@127 76 XM(dft_solve), awake, print, destroy
cannam@127 77 };
cannam@127 78
cannam@127 79 UNUSED(ego);
cannam@127 80
cannam@127 81 /* check whether applicable: */
cannam@127 82 if (!XM(dft_serial_applicable)(p))
cannam@127 83 return (plan *) 0;
cannam@127 84
cannam@127 85 X(extract_reim)(p->sign, p->I, &ri, &ii);
cannam@127 86 X(extract_reim)(p->sign, p->O, &ro, &io);
cannam@127 87
cannam@127 88 MPI_Comm_rank(p->comm, &my_pe);
cannam@127 89 if (my_pe == 0 && p->vn > 0) {
cannam@127 90 int i, rnk = p->sz->rnk;
cannam@127 91 tensor *sz = X(mktensor)(p->sz->rnk);
cannam@127 92 sz->dims[rnk - 1].is = sz->dims[rnk - 1].os = 2 * p->vn;
cannam@127 93 sz->dims[rnk - 1].n = p->sz->dims[rnk - 1].n;
cannam@127 94 for (i = rnk - 1; i > 0; --i) {
cannam@127 95 sz->dims[i - 1].is = sz->dims[i - 1].os =
cannam@127 96 sz->dims[i].is * sz->dims[i].n;
cannam@127 97 sz->dims[i - 1].n = p->sz->dims[i - 1].n;
cannam@127 98 }
cannam@127 99
cannam@127 100 cld = X(mkplan_d)(plnr,
cannam@127 101 X(mkproblem_dft_d)(sz,
cannam@127 102 X(mktensor_1d)(p->vn, 2, 2),
cannam@127 103 ri, ii, ro, io));
cannam@127 104 }
cannam@127 105 else { /* idle process: make nop plan */
cannam@127 106 cld = X(mkplan_d)(plnr,
cannam@127 107 X(mkproblem_dft_d)(X(mktensor_0d)(),
cannam@127 108 X(mktensor_1d)(0,0,0),
cannam@127 109 ri, ii, ro, io));
cannam@127 110 }
cannam@127 111 if (XM(any_true)(!cld, p->comm)) return (plan *) 0;
cannam@127 112
cannam@127 113 pln = MKPLAN_MPI_DFT(P, &padt, apply);
cannam@127 114 pln->cld = cld;
cannam@127 115 pln->roff = ro - p->O;
cannam@127 116 pln->ioff = io - p->O;
cannam@127 117 X(ops_cpy)(&cld->ops, &pln->super.super.ops);
cannam@127 118 return &(pln->super.super);
cannam@127 119 }
cannam@127 120
cannam@127 121 static solver *mksolver(void)
cannam@127 122 {
cannam@127 123 static const solver_adt sadt = { PROBLEM_MPI_DFT, mkplan, 0 };
cannam@127 124 return MKSOLVER(solver, &sadt);
cannam@127 125 }
cannam@127 126
cannam@127 127 void XM(dft_serial_register)(planner *p)
cannam@127 128 {
cannam@127 129 REGISTER_SOLVER(p, mksolver());
cannam@127 130 }