cannam@127
|
1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
|
cannam@127
|
2 <html>
|
cannam@127
|
3 <!-- This manual is for FFTW
|
cannam@127
|
4 (version 3.3.5, 30 July 2016).
|
cannam@127
|
5
|
cannam@127
|
6 Copyright (C) 2003 Matteo Frigo.
|
cannam@127
|
7
|
cannam@127
|
8 Copyright (C) 2003 Massachusetts Institute of Technology.
|
cannam@127
|
9
|
cannam@127
|
10 Permission is granted to make and distribute verbatim copies of this
|
cannam@127
|
11 manual provided the copyright notice and this permission notice are
|
cannam@127
|
12 preserved on all copies.
|
cannam@127
|
13
|
cannam@127
|
14 Permission is granted to copy and distribute modified versions of this
|
cannam@127
|
15 manual under the conditions for verbatim copying, provided that the
|
cannam@127
|
16 entire resulting derived work is distributed under the terms of a
|
cannam@127
|
17 permission notice identical to this one.
|
cannam@127
|
18
|
cannam@127
|
19 Permission is granted to copy and distribute translations of this manual
|
cannam@127
|
20 into another language, under the above conditions for modified versions,
|
cannam@127
|
21 except that this permission notice may be stated in a translation
|
cannam@127
|
22 approved by the Free Software Foundation. -->
|
cannam@127
|
23 <!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ -->
|
cannam@127
|
24 <head>
|
cannam@127
|
25 <title>FFTW 3.3.5: Multi-dimensional MPI DFTs of Real Data</title>
|
cannam@127
|
26
|
cannam@127
|
27 <meta name="description" content="FFTW 3.3.5: Multi-dimensional MPI DFTs of Real Data">
|
cannam@127
|
28 <meta name="keywords" content="FFTW 3.3.5: Multi-dimensional MPI DFTs of Real Data">
|
cannam@127
|
29 <meta name="resource-type" content="document">
|
cannam@127
|
30 <meta name="distribution" content="global">
|
cannam@127
|
31 <meta name="Generator" content="makeinfo">
|
cannam@127
|
32 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
|
cannam@127
|
33 <link href="index.html#Top" rel="start" title="Top">
|
cannam@127
|
34 <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
|
cannam@127
|
35 <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
|
cannam@127
|
36 <link href="Distributed_002dmemory-FFTW-with-MPI.html#Distributed_002dmemory-FFTW-with-MPI" rel="up" title="Distributed-memory FFTW with MPI">
|
cannam@127
|
37 <link href="Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms.html#Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms" rel="next" title="Other Multi-dimensional Real-data MPI Transforms">
|
cannam@127
|
38 <link href="One_002ddimensional-distributions.html#One_002ddimensional-distributions" rel="prev" title="One-dimensional distributions">
|
cannam@127
|
39 <style type="text/css">
|
cannam@127
|
40 <!--
|
cannam@127
|
41 a.summary-letter {text-decoration: none}
|
cannam@127
|
42 blockquote.smallquotation {font-size: smaller}
|
cannam@127
|
43 div.display {margin-left: 3.2em}
|
cannam@127
|
44 div.example {margin-left: 3.2em}
|
cannam@127
|
45 div.indentedblock {margin-left: 3.2em}
|
cannam@127
|
46 div.lisp {margin-left: 3.2em}
|
cannam@127
|
47 div.smalldisplay {margin-left: 3.2em}
|
cannam@127
|
48 div.smallexample {margin-left: 3.2em}
|
cannam@127
|
49 div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
|
cannam@127
|
50 div.smalllisp {margin-left: 3.2em}
|
cannam@127
|
51 kbd {font-style:oblique}
|
cannam@127
|
52 pre.display {font-family: inherit}
|
cannam@127
|
53 pre.format {font-family: inherit}
|
cannam@127
|
54 pre.menu-comment {font-family: serif}
|
cannam@127
|
55 pre.menu-preformatted {font-family: serif}
|
cannam@127
|
56 pre.smalldisplay {font-family: inherit; font-size: smaller}
|
cannam@127
|
57 pre.smallexample {font-size: smaller}
|
cannam@127
|
58 pre.smallformat {font-family: inherit; font-size: smaller}
|
cannam@127
|
59 pre.smalllisp {font-size: smaller}
|
cannam@127
|
60 span.nocodebreak {white-space:nowrap}
|
cannam@127
|
61 span.nolinebreak {white-space:nowrap}
|
cannam@127
|
62 span.roman {font-family:serif; font-weight:normal}
|
cannam@127
|
63 span.sansserif {font-family:sans-serif; font-weight:normal}
|
cannam@127
|
64 ul.no-bullet {list-style: none}
|
cannam@127
|
65 -->
|
cannam@127
|
66 </style>
|
cannam@127
|
67
|
cannam@127
|
68
|
cannam@127
|
69 </head>
|
cannam@127
|
70
|
cannam@127
|
71 <body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
|
cannam@127
|
72 <a name="Multi_002ddimensional-MPI-DFTs-of-Real-Data"></a>
|
cannam@127
|
73 <div class="header">
|
cannam@127
|
74 <p>
|
cannam@127
|
75 Next: <a href="Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms.html#Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms" accesskey="n" rel="next">Other Multi-dimensional Real-data MPI Transforms</a>, Previous: <a href="MPI-Data-Distribution.html#MPI-Data-Distribution" accesskey="p" rel="prev">MPI Data Distribution</a>, Up: <a href="Distributed_002dmemory-FFTW-with-MPI.html#Distributed_002dmemory-FFTW-with-MPI" accesskey="u" rel="up">Distributed-memory FFTW with MPI</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
|
cannam@127
|
76 </div>
|
cannam@127
|
77 <hr>
|
cannam@127
|
78 <a name="Multi_002ddimensional-MPI-DFTs-of-Real-Data-1"></a>
|
cannam@127
|
79 <h3 class="section">6.5 Multi-dimensional MPI DFTs of Real Data</h3>
|
cannam@127
|
80
|
cannam@127
|
81 <p>FFTW’s MPI interface also supports multi-dimensional DFTs of real
|
cannam@127
|
82 data, similar to the serial r2c and c2r interfaces. (Parallel
|
cannam@127
|
83 one-dimensional real-data DFTs are not currently supported; you must
|
cannam@127
|
84 use a complex transform and set the imaginary parts of the inputs to
|
cannam@127
|
85 zero.)
|
cannam@127
|
86 </p>
|
cannam@127
|
87 <p>The key points to understand for r2c and c2r MPI transforms (compared
|
cannam@127
|
88 to the MPI complex DFTs or the serial r2c/c2r transforms), are:
|
cannam@127
|
89 </p>
|
cannam@127
|
90 <ul>
|
cannam@127
|
91 <li> Just as for serial transforms, r2c/c2r DFTs transform n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × n<sub>d-1</sub> real
|
cannam@127
|
92 data to/from n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × (n<sub>d-1</sub>/2 + 1) complex data: the last dimension of the
|
cannam@127
|
93 complex data is cut in half (rounded down), plus one. As for the
|
cannam@127
|
94 serial transforms, the sizes you pass to the ‘<samp>plan_dft_r2c</samp>’ and
|
cannam@127
|
95 ‘<samp>plan_dft_c2r</samp>’ are the n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × n<sub>d-1</sub> dimensions of the real data.
|
cannam@127
|
96
|
cannam@127
|
97 </li><li> <a name="index-padding-4"></a>
|
cannam@127
|
98 Although the real data is <em>conceptually</em> n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × n<sub>d-1</sub>, it is
|
cannam@127
|
99 <em>physically</em> stored as an n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × [2 (n<sub>d-1</sub>/2 + 1)] array, where the last
|
cannam@127
|
100 dimension has been <em>padded</em> to make it the same size as the
|
cannam@127
|
101 complex output. This is much like the in-place serial r2c/c2r
|
cannam@127
|
102 interface (see <a href="Multi_002dDimensional-DFTs-of-Real-Data.html#Multi_002dDimensional-DFTs-of-Real-Data">Multi-Dimensional DFTs of Real Data</a>), except that
|
cannam@127
|
103 in MPI the padding is required even for out-of-place data. The extra
|
cannam@127
|
104 padding numbers are ignored by FFTW (they are <em>not</em> like
|
cannam@127
|
105 zero-padding the transform to a larger size); they are only used to
|
cannam@127
|
106 determine the data layout.
|
cannam@127
|
107
|
cannam@127
|
108 </li><li> <a name="index-data-distribution-3"></a>
|
cannam@127
|
109 The data distribution in MPI for <em>both</em> the real and complex data
|
cannam@127
|
110 is determined by the shape of the <em>complex</em> data. That is, you
|
cannam@127
|
111 call the appropriate ‘<samp>local size</samp>’ function for the n<sub>0</sub> × n<sub>1</sub> × n<sub>2</sub> × … × (n<sub>d-1</sub>/2 + 1)
|
cannam@127
|
112 complex data, and then use the <em>same</em> distribution for the real
|
cannam@127
|
113 data except that the last complex dimension is replaced by a (padded)
|
cannam@127
|
114 real dimension of twice the length.
|
cannam@127
|
115
|
cannam@127
|
116 </li></ul>
|
cannam@127
|
117
|
cannam@127
|
118 <p>For example suppose we are performing an out-of-place r2c transform of
|
cannam@127
|
119 L × M × N real data [padded to L × M × 2(N/2+1)],
|
cannam@127
|
120 resulting in L × M × N/2+1 complex data. Similar to the
|
cannam@127
|
121 example in <a href="2d-MPI-example.html#g_t2d-MPI-example">2d MPI example</a>, we might do something like:
|
cannam@127
|
122 </p>
|
cannam@127
|
123 <div class="example">
|
cannam@127
|
124 <pre class="example">#include <fftw3-mpi.h>
|
cannam@127
|
125
|
cannam@127
|
126 int main(int argc, char **argv)
|
cannam@127
|
127 {
|
cannam@127
|
128 const ptrdiff_t L = ..., M = ..., N = ...;
|
cannam@127
|
129 fftw_plan plan;
|
cannam@127
|
130 double *rin;
|
cannam@127
|
131 fftw_complex *cout;
|
cannam@127
|
132 ptrdiff_t alloc_local, local_n0, local_0_start, i, j, k;
|
cannam@127
|
133
|
cannam@127
|
134 MPI_Init(&argc, &argv);
|
cannam@127
|
135 fftw_mpi_init();
|
cannam@127
|
136
|
cannam@127
|
137 /* <span class="roman">get local data size and allocate</span> */
|
cannam@127
|
138 alloc_local = fftw_mpi_local_size_3d(L, M, N/2+1, MPI_COMM_WORLD,
|
cannam@127
|
139 &local_n0, &local_0_start);
|
cannam@127
|
140 rin = fftw_alloc_real(2 * alloc_local);
|
cannam@127
|
141 cout = fftw_alloc_complex(alloc_local);
|
cannam@127
|
142
|
cannam@127
|
143 /* <span class="roman">create plan for out-of-place r2c DFT</span> */
|
cannam@127
|
144 plan = fftw_mpi_plan_dft_r2c_3d(L, M, N, rin, cout, MPI_COMM_WORLD,
|
cannam@127
|
145 FFTW_MEASURE);
|
cannam@127
|
146
|
cannam@127
|
147 /* <span class="roman">initialize rin to some function</span> my_func(x,y,z) */
|
cannam@127
|
148 for (i = 0; i < local_n0; ++i)
|
cannam@127
|
149 for (j = 0; j < M; ++j)
|
cannam@127
|
150 for (k = 0; k < N; ++k)
|
cannam@127
|
151 rin[(i*M + j) * (2*(N/2+1)) + k] = my_func(local_0_start+i, j, k);
|
cannam@127
|
152
|
cannam@127
|
153 /* <span class="roman">compute transforms as many times as desired</span> */
|
cannam@127
|
154 fftw_execute(plan);
|
cannam@127
|
155
|
cannam@127
|
156 fftw_destroy_plan(plan);
|
cannam@127
|
157
|
cannam@127
|
158 MPI_Finalize();
|
cannam@127
|
159 }
|
cannam@127
|
160 </pre></div>
|
cannam@127
|
161
|
cannam@127
|
162 <a name="index-fftw_005falloc_005freal-2"></a>
|
cannam@127
|
163 <a name="index-row_002dmajor-5"></a>
|
cannam@127
|
164 <p>Note that we allocated <code>rin</code> using <code>fftw_alloc_real</code> with an
|
cannam@127
|
165 argument of <code>2 * alloc_local</code>: since <code>alloc_local</code> is the
|
cannam@127
|
166 number of <em>complex</em> values to allocate, the number of <em>real</em>
|
cannam@127
|
167 values is twice as many. The <code>rin</code> array is then
|
cannam@127
|
168 local_n0 × M × 2(N/2+1) in row-major order, so its
|
cannam@127
|
169 <code>(i,j,k)</code> element is at the index <code>(i*M + j) * (2*(N/2+1)) +
|
cannam@127
|
170 k</code> (see <a href="Multi_002ddimensional-Array-Format.html#Multi_002ddimensional-Array-Format">Multi-dimensional Array Format</a>).
|
cannam@127
|
171 </p>
|
cannam@127
|
172 <a name="index-transpose-1"></a>
|
cannam@127
|
173 <a name="index-FFTW_005fTRANSPOSED_005fOUT"></a>
|
cannam@127
|
174 <a name="index-FFTW_005fTRANSPOSED_005fIN"></a>
|
cannam@127
|
175 <p>As for the complex transforms, improved performance can be obtained by
|
cannam@127
|
176 specifying that the output is the transpose of the input or vice versa
|
cannam@127
|
177 (see <a href="Transposed-distributions.html#Transposed-distributions">Transposed distributions</a>). In our L × M × N r2c
|
cannam@127
|
178 example, including <code>FFTW_TRANSPOSED_OUT</code> in the flags means that
|
cannam@127
|
179 the input would be a padded L × M × 2(N/2+1) real array
|
cannam@127
|
180 distributed over the <code>L</code> dimension, while the output would be a
|
cannam@127
|
181 M × L × N/2+1 complex array distributed over the <code>M</code>
|
cannam@127
|
182 dimension. To perform the inverse c2r transform with the same data
|
cannam@127
|
183 distributions, you would use the <code>FFTW_TRANSPOSED_IN</code> flag.
|
cannam@127
|
184 </p>
|
cannam@127
|
185 <hr>
|
cannam@127
|
186 <div class="header">
|
cannam@127
|
187 <p>
|
cannam@127
|
188 Next: <a href="Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms.html#Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms" accesskey="n" rel="next">Other Multi-dimensional Real-data MPI Transforms</a>, Previous: <a href="MPI-Data-Distribution.html#MPI-Data-Distribution" accesskey="p" rel="prev">MPI Data Distribution</a>, Up: <a href="Distributed_002dmemory-FFTW-with-MPI.html#Distributed_002dmemory-FFTW-with-MPI" accesskey="u" rel="up">Distributed-memory FFTW with MPI</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
|
cannam@127
|
189 </div>
|
cannam@127
|
190
|
cannam@127
|
191
|
cannam@127
|
192
|
cannam@127
|
193 </body>
|
cannam@127
|
194 </html>
|