annotate src/fftw-3.3.5/doc/html/Distributed_002dmemory-FFTW-with-MPI.html @ 127:7867fa7e1b6b

Current fftw source
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
rev   line source
cannam@127 1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
cannam@127 2 <html>
cannam@127 3 <!-- This manual is for FFTW
cannam@127 4 (version 3.3.5, 30 July 2016).
cannam@127 5
cannam@127 6 Copyright (C) 2003 Matteo Frigo.
cannam@127 7
cannam@127 8 Copyright (C) 2003 Massachusetts Institute of Technology.
cannam@127 9
cannam@127 10 Permission is granted to make and distribute verbatim copies of this
cannam@127 11 manual provided the copyright notice and this permission notice are
cannam@127 12 preserved on all copies.
cannam@127 13
cannam@127 14 Permission is granted to copy and distribute modified versions of this
cannam@127 15 manual under the conditions for verbatim copying, provided that the
cannam@127 16 entire resulting derived work is distributed under the terms of a
cannam@127 17 permission notice identical to this one.
cannam@127 18
cannam@127 19 Permission is granted to copy and distribute translations of this manual
cannam@127 20 into another language, under the above conditions for modified versions,
cannam@127 21 except that this permission notice may be stated in a translation
cannam@127 22 approved by the Free Software Foundation. -->
cannam@127 23 <!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ -->
cannam@127 24 <head>
cannam@127 25 <title>FFTW 3.3.5: Distributed-memory FFTW with MPI</title>
cannam@127 26
cannam@127 27 <meta name="description" content="FFTW 3.3.5: Distributed-memory FFTW with MPI">
cannam@127 28 <meta name="keywords" content="FFTW 3.3.5: Distributed-memory FFTW with MPI">
cannam@127 29 <meta name="resource-type" content="document">
cannam@127 30 <meta name="distribution" content="global">
cannam@127 31 <meta name="Generator" content="makeinfo">
cannam@127 32 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
cannam@127 33 <link href="index.html#Top" rel="start" title="Top">
cannam@127 34 <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
cannam@127 35 <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
cannam@127 36 <link href="index.html#Top" rel="up" title="Top">
cannam@127 37 <link href="FFTW-MPI-Installation.html#FFTW-MPI-Installation" rel="next" title="FFTW MPI Installation">
cannam@127 38 <link href="Thread-safety.html#Thread-safety" rel="prev" title="Thread safety">
cannam@127 39 <style type="text/css">
cannam@127 40 <!--
cannam@127 41 a.summary-letter {text-decoration: none}
cannam@127 42 blockquote.smallquotation {font-size: smaller}
cannam@127 43 div.display {margin-left: 3.2em}
cannam@127 44 div.example {margin-left: 3.2em}
cannam@127 45 div.indentedblock {margin-left: 3.2em}
cannam@127 46 div.lisp {margin-left: 3.2em}
cannam@127 47 div.smalldisplay {margin-left: 3.2em}
cannam@127 48 div.smallexample {margin-left: 3.2em}
cannam@127 49 div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
cannam@127 50 div.smalllisp {margin-left: 3.2em}
cannam@127 51 kbd {font-style:oblique}
cannam@127 52 pre.display {font-family: inherit}
cannam@127 53 pre.format {font-family: inherit}
cannam@127 54 pre.menu-comment {font-family: serif}
cannam@127 55 pre.menu-preformatted {font-family: serif}
cannam@127 56 pre.smalldisplay {font-family: inherit; font-size: smaller}
cannam@127 57 pre.smallexample {font-size: smaller}
cannam@127 58 pre.smallformat {font-family: inherit; font-size: smaller}
cannam@127 59 pre.smalllisp {font-size: smaller}
cannam@127 60 span.nocodebreak {white-space:nowrap}
cannam@127 61 span.nolinebreak {white-space:nowrap}
cannam@127 62 span.roman {font-family:serif; font-weight:normal}
cannam@127 63 span.sansserif {font-family:sans-serif; font-weight:normal}
cannam@127 64 ul.no-bullet {list-style: none}
cannam@127 65 -->
cannam@127 66 </style>
cannam@127 67
cannam@127 68
cannam@127 69 </head>
cannam@127 70
cannam@127 71 <body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
cannam@127 72 <a name="Distributed_002dmemory-FFTW-with-MPI"></a>
cannam@127 73 <div class="header">
cannam@127 74 <p>
cannam@127 75 Next: <a href="Calling-FFTW-from-Modern-Fortran.html#Calling-FFTW-from-Modern-Fortran" accesskey="n" rel="next">Calling FFTW from Modern Fortran</a>, Previous: <a href="Multi_002dthreaded-FFTW.html#Multi_002dthreaded-FFTW" accesskey="p" rel="prev">Multi-threaded FFTW</a>, Up: <a href="index.html#Top" accesskey="u" rel="up">Top</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
cannam@127 76 </div>
cannam@127 77 <hr>
cannam@127 78 <a name="Distributed_002dmemory-FFTW-with-MPI-1"></a>
cannam@127 79 <h2 class="chapter">6 Distributed-memory FFTW with MPI</h2>
cannam@127 80 <a name="index-MPI"></a>
cannam@127 81
cannam@127 82 <a name="index-parallel-transform-1"></a>
cannam@127 83 <p>In this chapter we document the parallel FFTW routines for parallel
cannam@127 84 systems supporting the MPI message-passing interface. Unlike the
cannam@127 85 shared-memory threads described in the previous chapter, MPI allows
cannam@127 86 you to use <em>distributed-memory</em> parallelism, where each CPU has
cannam@127 87 its own separate memory, and which can scale up to clusters of many
cannam@127 88 thousands of processors. This capability comes at a price, however:
cannam@127 89 each process only stores a <em>portion</em> of the data to be
cannam@127 90 transformed, which means that the data structures and
cannam@127 91 programming-interface are quite different from the serial or threads
cannam@127 92 versions of FFTW.
cannam@127 93 <a name="index-data-distribution"></a>
cannam@127 94 </p>
cannam@127 95
cannam@127 96 <p>Distributed-memory parallelism is especially useful when you are
cannam@127 97 transforming arrays so large that they do not fit into the memory of a
cannam@127 98 single processor. The storage per-process required by FFTW&rsquo;s MPI
cannam@127 99 routines is proportional to the total array size divided by the number
cannam@127 100 of processes. Conversely, distributed-memory parallelism can easily
cannam@127 101 pose an unacceptably high communications overhead for small problems;
cannam@127 102 the threshold problem size for which parallelism becomes advantageous
cannam@127 103 will depend on the precise problem you are interested in, your
cannam@127 104 hardware, and your MPI implementation.
cannam@127 105 </p>
cannam@127 106 <p>A note on terminology: in MPI, you divide the data among a set of
cannam@127 107 &ldquo;processes&rdquo; which each run in their own memory address space.
cannam@127 108 Generally, each process runs on a different physical processor, but
cannam@127 109 this is not required. A set of processes in MPI is described by an
cannam@127 110 opaque data structure called a &ldquo;communicator,&rdquo; the most common of
cannam@127 111 which is the predefined communicator <code>MPI_COMM_WORLD</code> which
cannam@127 112 refers to <em>all</em> processes. For more information on these and
cannam@127 113 other concepts common to all MPI programs, we refer the reader to the
cannam@127 114 documentation at <a href="http://www.mcs.anl.gov/research/projects/mpi/">the MPI home
cannam@127 115 page</a>.
cannam@127 116 <a name="index-MPI-communicator"></a>
cannam@127 117 <a name="index-MPI_005fCOMM_005fWORLD"></a>
cannam@127 118 </p>
cannam@127 119
cannam@127 120 <p>We assume in this chapter that the reader is familiar with the usage
cannam@127 121 of the serial (uniprocessor) FFTW, and focus only on the concepts new
cannam@127 122 to the MPI interface.
cannam@127 123 </p>
cannam@127 124 <table class="menu" border="0" cellspacing="0">
cannam@127 125 <tr><td align="left" valign="top">&bull; <a href="FFTW-MPI-Installation.html#FFTW-MPI-Installation" accesskey="1">FFTW MPI Installation</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
cannam@127 126 </td></tr>
cannam@127 127 <tr><td align="left" valign="top">&bull; <a href="Linking-and-Initializing-MPI-FFTW.html#Linking-and-Initializing-MPI-FFTW" accesskey="2">Linking and Initializing MPI FFTW</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
cannam@127 128 </td></tr>
cannam@127 129 <tr><td align="left" valign="top">&bull; <a href="2d-MPI-example.html#g_t2d-MPI-example" accesskey="3">2d MPI example</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
cannam@127 130 </td></tr>
cannam@127 131 <tr><td align="left" valign="top">&bull; <a href="MPI-Data-Distribution.html#MPI-Data-Distribution" accesskey="4">MPI Data Distribution</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
cannam@127 132 </td></tr>
cannam@127 133 <tr><td align="left" valign="top">&bull; <a href="Multi_002ddimensional-MPI-DFTs-of-Real-Data.html#Multi_002ddimensional-MPI-DFTs-of-Real-Data" accesskey="5">Multi-dimensional MPI DFTs of Real Data</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
cannam@127 134 </td></tr>
cannam@127 135 <tr><td align="left" valign="top">&bull; <a href="Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms.html#Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms" accesskey="6">Other Multi-dimensional Real-data MPI Transforms</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
cannam@127 136 </td></tr>
cannam@127 137 <tr><td align="left" valign="top">&bull; <a href="FFTW-MPI-Transposes.html#FFTW-MPI-Transposes" accesskey="7">FFTW MPI Transposes</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
cannam@127 138 </td></tr>
cannam@127 139 <tr><td align="left" valign="top">&bull; <a href="FFTW-MPI-Wisdom.html#FFTW-MPI-Wisdom" accesskey="8">FFTW MPI Wisdom</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
cannam@127 140 </td></tr>
cannam@127 141 <tr><td align="left" valign="top">&bull; <a href="Avoiding-MPI-Deadlocks.html#Avoiding-MPI-Deadlocks" accesskey="9">Avoiding MPI Deadlocks</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
cannam@127 142 </td></tr>
cannam@127 143 <tr><td align="left" valign="top">&bull; <a href="FFTW-MPI-Performance-Tips.html#FFTW-MPI-Performance-Tips">FFTW MPI Performance Tips</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
cannam@127 144 </td></tr>
cannam@127 145 <tr><td align="left" valign="top">&bull; <a href="Combining-MPI-and-Threads.html#Combining-MPI-and-Threads">Combining MPI and Threads</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
cannam@127 146 </td></tr>
cannam@127 147 <tr><td align="left" valign="top">&bull; <a href="FFTW-MPI-Reference.html#FFTW-MPI-Reference">FFTW MPI Reference</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
cannam@127 148 </td></tr>
cannam@127 149 <tr><td align="left" valign="top">&bull; <a href="FFTW-MPI-Fortran-Interface.html#FFTW-MPI-Fortran-Interface">FFTW MPI Fortran Interface</a>:</td><td>&nbsp;&nbsp;</td><td align="left" valign="top">
cannam@127 150 </td></tr>
cannam@127 151 </table>
cannam@127 152
cannam@127 153 <hr>
cannam@127 154 <div class="header">
cannam@127 155 <p>
cannam@127 156 Next: <a href="Calling-FFTW-from-Modern-Fortran.html#Calling-FFTW-from-Modern-Fortran" accesskey="n" rel="next">Calling FFTW from Modern Fortran</a>, Previous: <a href="Multi_002dthreaded-FFTW.html#Multi_002dthreaded-FFTW" accesskey="p" rel="prev">Multi-threaded FFTW</a>, Up: <a href="index.html#Top" accesskey="u" rel="up">Top</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
cannam@127 157 </div>
cannam@127 158
cannam@127 159
cannam@127 160
cannam@127 161 </body>
cannam@127 162 </html>