annotate src/fftw-3.3.5/dft/simd/common/t3fv_8.c @ 127:7867fa7e1b6b

Current fftw source
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:43:52 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-dft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3fv_8 -include t3f.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 37 FP additions, 32 FP multiplications,
cannam@127 32 * (or, 27 additions, 22 multiplications, 10 fused multiply/add),
cannam@127 33 * 43 stack variables, 1 constants, and 16 memory accesses
cannam@127 34 */
cannam@127 35 #include "t3f.h"
cannam@127 36
cannam@127 37 static void t3fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 38 {
cannam@127 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@127 40 {
cannam@127 41 INT m;
cannam@127 42 R *x;
cannam@127 43 x = ri;
cannam@127 44 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
cannam@127 45 V T2, T3, Tb, T1, T5, Tn, Tq, T8, Td, T4, Ta, Tp, Tg, Ti, T9;
cannam@127 46 T2 = LDW(&(W[0]));
cannam@127 47 T3 = LDW(&(W[TWVL * 2]));
cannam@127 48 Tb = LDW(&(W[TWVL * 4]));
cannam@127 49 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@127 50 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@127 51 Tn = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@127 52 Tq = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@127 53 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@127 54 Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@127 55 T4 = VZMUL(T2, T3);
cannam@127 56 Ta = VZMULJ(T2, T3);
cannam@127 57 Tp = VZMULJ(T2, Tb);
cannam@127 58 Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@127 59 Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@127 60 T9 = VZMULJ(T2, T8);
cannam@127 61 {
cannam@127 62 V T6, To, Tc, Tr, Th, Tj;
cannam@127 63 T6 = VZMULJ(T4, T5);
cannam@127 64 To = VZMULJ(Ta, Tn);
cannam@127 65 Tc = VZMULJ(Ta, Tb);
cannam@127 66 Tr = VZMULJ(Tp, Tq);
cannam@127 67 Th = VZMULJ(Tb, Tg);
cannam@127 68 Tj = VZMULJ(T3, Ti);
cannam@127 69 {
cannam@127 70 V Tx, T7, Te, Ts, Ty, Tk, TB;
cannam@127 71 Tx = VADD(T1, T6);
cannam@127 72 T7 = VSUB(T1, T6);
cannam@127 73 Te = VZMULJ(Tc, Td);
cannam@127 74 Ts = VSUB(To, Tr);
cannam@127 75 Ty = VADD(To, Tr);
cannam@127 76 Tk = VSUB(Th, Tj);
cannam@127 77 TB = VADD(Th, Tj);
cannam@127 78 {
cannam@127 79 V Tf, TA, Tz, TD;
cannam@127 80 Tf = VSUB(T9, Te);
cannam@127 81 TA = VADD(T9, Te);
cannam@127 82 Tz = VADD(Tx, Ty);
cannam@127 83 TD = VSUB(Tx, Ty);
cannam@127 84 {
cannam@127 85 V TC, TE, Tl, Tt;
cannam@127 86 TC = VADD(TA, TB);
cannam@127 87 TE = VSUB(TB, TA);
cannam@127 88 Tl = VADD(Tf, Tk);
cannam@127 89 Tt = VSUB(Tk, Tf);
cannam@127 90 {
cannam@127 91 V Tu, Tw, Tm, Tv;
cannam@127 92 ST(&(x[WS(rs, 2)]), VFMAI(TE, TD), ms, &(x[0]));
cannam@127 93 ST(&(x[WS(rs, 6)]), VFNMSI(TE, TD), ms, &(x[0]));
cannam@127 94 ST(&(x[0]), VADD(Tz, TC), ms, &(x[0]));
cannam@127 95 ST(&(x[WS(rs, 4)]), VSUB(Tz, TC), ms, &(x[0]));
cannam@127 96 Tu = VFNMS(LDK(KP707106781), Tt, Ts);
cannam@127 97 Tw = VFMA(LDK(KP707106781), Tt, Ts);
cannam@127 98 Tm = VFMA(LDK(KP707106781), Tl, T7);
cannam@127 99 Tv = VFNMS(LDK(KP707106781), Tl, T7);
cannam@127 100 ST(&(x[WS(rs, 5)]), VFNMSI(Tw, Tv), ms, &(x[WS(rs, 1)]));
cannam@127 101 ST(&(x[WS(rs, 3)]), VFMAI(Tw, Tv), ms, &(x[WS(rs, 1)]));
cannam@127 102 ST(&(x[WS(rs, 7)]), VFMAI(Tu, Tm), ms, &(x[WS(rs, 1)]));
cannam@127 103 ST(&(x[WS(rs, 1)]), VFNMSI(Tu, Tm), ms, &(x[WS(rs, 1)]));
cannam@127 104 }
cannam@127 105 }
cannam@127 106 }
cannam@127 107 }
cannam@127 108 }
cannam@127 109 }
cannam@127 110 }
cannam@127 111 VLEAVE();
cannam@127 112 }
cannam@127 113
cannam@127 114 static const tw_instr twinstr[] = {
cannam@127 115 VTW(0, 1),
cannam@127 116 VTW(0, 3),
cannam@127 117 VTW(0, 7),
cannam@127 118 {TW_NEXT, VL, 0}
cannam@127 119 };
cannam@127 120
cannam@127 121 static const ct_desc desc = { 8, XSIMD_STRING("t3fv_8"), twinstr, &GENUS, {27, 22, 10, 0}, 0, 0, 0 };
cannam@127 122
cannam@127 123 void XSIMD(codelet_t3fv_8) (planner *p) {
cannam@127 124 X(kdft_dit_register) (p, t3fv_8, &desc);
cannam@127 125 }
cannam@127 126 #else /* HAVE_FMA */
cannam@127 127
cannam@127 128 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 8 -name t3fv_8 -include t3f.h */
cannam@127 129
cannam@127 130 /*
cannam@127 131 * This function contains 37 FP additions, 24 FP multiplications,
cannam@127 132 * (or, 37 additions, 24 multiplications, 0 fused multiply/add),
cannam@127 133 * 31 stack variables, 1 constants, and 16 memory accesses
cannam@127 134 */
cannam@127 135 #include "t3f.h"
cannam@127 136
cannam@127 137 static void t3fv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 138 {
cannam@127 139 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@127 140 {
cannam@127 141 INT m;
cannam@127 142 R *x;
cannam@127 143 x = ri;
cannam@127 144 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(8, rs)) {
cannam@127 145 V T2, T3, Ta, T4, Tb, Tc, Tq;
cannam@127 146 T2 = LDW(&(W[0]));
cannam@127 147 T3 = LDW(&(W[TWVL * 2]));
cannam@127 148 Ta = VZMULJ(T2, T3);
cannam@127 149 T4 = VZMUL(T2, T3);
cannam@127 150 Tb = LDW(&(W[TWVL * 4]));
cannam@127 151 Tc = VZMULJ(Ta, Tb);
cannam@127 152 Tq = VZMULJ(T2, Tb);
cannam@127 153 {
cannam@127 154 V T7, Tx, Tt, Ty, Tf, TA, Tk, TB, T1, T6, T5;
cannam@127 155 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@127 156 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@127 157 T6 = VZMULJ(T4, T5);
cannam@127 158 T7 = VSUB(T1, T6);
cannam@127 159 Tx = VADD(T1, T6);
cannam@127 160 {
cannam@127 161 V Tp, Ts, To, Tr;
cannam@127 162 To = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@127 163 Tp = VZMULJ(Ta, To);
cannam@127 164 Tr = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@127 165 Ts = VZMULJ(Tq, Tr);
cannam@127 166 Tt = VSUB(Tp, Ts);
cannam@127 167 Ty = VADD(Tp, Ts);
cannam@127 168 }
cannam@127 169 {
cannam@127 170 V T9, Te, T8, Td;
cannam@127 171 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@127 172 T9 = VZMULJ(T2, T8);
cannam@127 173 Td = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@127 174 Te = VZMULJ(Tc, Td);
cannam@127 175 Tf = VSUB(T9, Te);
cannam@127 176 TA = VADD(T9, Te);
cannam@127 177 }
cannam@127 178 {
cannam@127 179 V Th, Tj, Tg, Ti;
cannam@127 180 Tg = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@127 181 Th = VZMULJ(Tb, Tg);
cannam@127 182 Ti = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@127 183 Tj = VZMULJ(T3, Ti);
cannam@127 184 Tk = VSUB(Th, Tj);
cannam@127 185 TB = VADD(Th, Tj);
cannam@127 186 }
cannam@127 187 {
cannam@127 188 V Tz, TC, TD, TE;
cannam@127 189 Tz = VADD(Tx, Ty);
cannam@127 190 TC = VADD(TA, TB);
cannam@127 191 ST(&(x[WS(rs, 4)]), VSUB(Tz, TC), ms, &(x[0]));
cannam@127 192 ST(&(x[0]), VADD(Tz, TC), ms, &(x[0]));
cannam@127 193 TD = VSUB(Tx, Ty);
cannam@127 194 TE = VBYI(VSUB(TB, TA));
cannam@127 195 ST(&(x[WS(rs, 6)]), VSUB(TD, TE), ms, &(x[0]));
cannam@127 196 ST(&(x[WS(rs, 2)]), VADD(TD, TE), ms, &(x[0]));
cannam@127 197 {
cannam@127 198 V Tm, Tv, Tu, Tw, Tl, Tn;
cannam@127 199 Tl = VMUL(LDK(KP707106781), VADD(Tf, Tk));
cannam@127 200 Tm = VADD(T7, Tl);
cannam@127 201 Tv = VSUB(T7, Tl);
cannam@127 202 Tn = VMUL(LDK(KP707106781), VSUB(Tk, Tf));
cannam@127 203 Tu = VBYI(VSUB(Tn, Tt));
cannam@127 204 Tw = VBYI(VADD(Tt, Tn));
cannam@127 205 ST(&(x[WS(rs, 7)]), VSUB(Tm, Tu), ms, &(x[WS(rs, 1)]));
cannam@127 206 ST(&(x[WS(rs, 3)]), VADD(Tv, Tw), ms, &(x[WS(rs, 1)]));
cannam@127 207 ST(&(x[WS(rs, 1)]), VADD(Tm, Tu), ms, &(x[WS(rs, 1)]));
cannam@127 208 ST(&(x[WS(rs, 5)]), VSUB(Tv, Tw), ms, &(x[WS(rs, 1)]));
cannam@127 209 }
cannam@127 210 }
cannam@127 211 }
cannam@127 212 }
cannam@127 213 }
cannam@127 214 VLEAVE();
cannam@127 215 }
cannam@127 216
cannam@127 217 static const tw_instr twinstr[] = {
cannam@127 218 VTW(0, 1),
cannam@127 219 VTW(0, 3),
cannam@127 220 VTW(0, 7),
cannam@127 221 {TW_NEXT, VL, 0}
cannam@127 222 };
cannam@127 223
cannam@127 224 static const ct_desc desc = { 8, XSIMD_STRING("t3fv_8"), twinstr, &GENUS, {37, 24, 0, 0}, 0, 0, 0 };
cannam@127 225
cannam@127 226 void XSIMD(codelet_t3fv_8) (planner *p) {
cannam@127 227 X(kdft_dit_register) (p, t3fv_8, &desc);
cannam@127 228 }
cannam@127 229 #endif /* HAVE_FMA */