annotate src/fftw-3.3.5/dft/simd/common/t2fv_5.c @ 127:7867fa7e1b6b

Current fftw source
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:43:29 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-dft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 5 -name t2fv_5 -include t2f.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 20 FP additions, 19 FP multiplications,
cannam@127 32 * (or, 11 additions, 10 multiplications, 9 fused multiply/add),
cannam@127 33 * 26 stack variables, 4 constants, and 10 memory accesses
cannam@127 34 */
cannam@127 35 #include "t2f.h"
cannam@127 36
cannam@127 37 static void t2fv_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 38 {
cannam@127 39 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@127 40 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@127 41 DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
cannam@127 42 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@127 43 {
cannam@127 44 INT m;
cannam@127 45 R *x;
cannam@127 46 x = ri;
cannam@127 47 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(5, rs)) {
cannam@127 48 V T1, T2, T9, T4, T7;
cannam@127 49 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@127 50 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@127 51 T9 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@127 52 T4 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@127 53 T7 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@127 54 {
cannam@127 55 V T3, Ta, T5, T8;
cannam@127 56 T3 = BYTWJ(&(W[0]), T2);
cannam@127 57 Ta = BYTWJ(&(W[TWVL * 4]), T9);
cannam@127 58 T5 = BYTWJ(&(W[TWVL * 6]), T4);
cannam@127 59 T8 = BYTWJ(&(W[TWVL * 2]), T7);
cannam@127 60 {
cannam@127 61 V T6, Tg, Tb, Th;
cannam@127 62 T6 = VADD(T3, T5);
cannam@127 63 Tg = VSUB(T3, T5);
cannam@127 64 Tb = VADD(T8, Ta);
cannam@127 65 Th = VSUB(T8, Ta);
cannam@127 66 {
cannam@127 67 V Te, Tc, Tk, Ti, Td, Tj, Tf;
cannam@127 68 Te = VSUB(T6, Tb);
cannam@127 69 Tc = VADD(T6, Tb);
cannam@127 70 Tk = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tg, Th));
cannam@127 71 Ti = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Th, Tg));
cannam@127 72 Td = VFNMS(LDK(KP250000000), Tc, T1);
cannam@127 73 ST(&(x[0]), VADD(T1, Tc), ms, &(x[0]));
cannam@127 74 Tj = VFNMS(LDK(KP559016994), Te, Td);
cannam@127 75 Tf = VFMA(LDK(KP559016994), Te, Td);
cannam@127 76 ST(&(x[WS(rs, 2)]), VFMAI(Tk, Tj), ms, &(x[0]));
cannam@127 77 ST(&(x[WS(rs, 3)]), VFNMSI(Tk, Tj), ms, &(x[WS(rs, 1)]));
cannam@127 78 ST(&(x[WS(rs, 4)]), VFMAI(Ti, Tf), ms, &(x[0]));
cannam@127 79 ST(&(x[WS(rs, 1)]), VFNMSI(Ti, Tf), ms, &(x[WS(rs, 1)]));
cannam@127 80 }
cannam@127 81 }
cannam@127 82 }
cannam@127 83 }
cannam@127 84 }
cannam@127 85 VLEAVE();
cannam@127 86 }
cannam@127 87
cannam@127 88 static const tw_instr twinstr[] = {
cannam@127 89 VTW(0, 1),
cannam@127 90 VTW(0, 2),
cannam@127 91 VTW(0, 3),
cannam@127 92 VTW(0, 4),
cannam@127 93 {TW_NEXT, VL, 0}
cannam@127 94 };
cannam@127 95
cannam@127 96 static const ct_desc desc = { 5, XSIMD_STRING("t2fv_5"), twinstr, &GENUS, {11, 10, 9, 0}, 0, 0, 0 };
cannam@127 97
cannam@127 98 void XSIMD(codelet_t2fv_5) (planner *p) {
cannam@127 99 X(kdft_dit_register) (p, t2fv_5, &desc);
cannam@127 100 }
cannam@127 101 #else /* HAVE_FMA */
cannam@127 102
cannam@127 103 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 5 -name t2fv_5 -include t2f.h */
cannam@127 104
cannam@127 105 /*
cannam@127 106 * This function contains 20 FP additions, 14 FP multiplications,
cannam@127 107 * (or, 17 additions, 11 multiplications, 3 fused multiply/add),
cannam@127 108 * 20 stack variables, 4 constants, and 10 memory accesses
cannam@127 109 */
cannam@127 110 #include "t2f.h"
cannam@127 111
cannam@127 112 static void t2fv_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 113 {
cannam@127 114 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
cannam@127 115 DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
cannam@127 116 DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
cannam@127 117 DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
cannam@127 118 {
cannam@127 119 INT m;
cannam@127 120 R *x;
cannam@127 121 x = ri;
cannam@127 122 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(5, rs)) {
cannam@127 123 V Tc, Tg, Th, T5, Ta, Td;
cannam@127 124 Tc = LD(&(x[0]), ms, &(x[0]));
cannam@127 125 {
cannam@127 126 V T2, T9, T4, T7;
cannam@127 127 {
cannam@127 128 V T1, T8, T3, T6;
cannam@127 129 T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@127 130 T2 = BYTWJ(&(W[0]), T1);
cannam@127 131 T8 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@127 132 T9 = BYTWJ(&(W[TWVL * 4]), T8);
cannam@127 133 T3 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@127 134 T4 = BYTWJ(&(W[TWVL * 6]), T3);
cannam@127 135 T6 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@127 136 T7 = BYTWJ(&(W[TWVL * 2]), T6);
cannam@127 137 }
cannam@127 138 Tg = VSUB(T2, T4);
cannam@127 139 Th = VSUB(T7, T9);
cannam@127 140 T5 = VADD(T2, T4);
cannam@127 141 Ta = VADD(T7, T9);
cannam@127 142 Td = VADD(T5, Ta);
cannam@127 143 }
cannam@127 144 ST(&(x[0]), VADD(Tc, Td), ms, &(x[0]));
cannam@127 145 {
cannam@127 146 V Ti, Tj, Tf, Tk, Tb, Te;
cannam@127 147 Ti = VBYI(VFMA(LDK(KP951056516), Tg, VMUL(LDK(KP587785252), Th)));
cannam@127 148 Tj = VBYI(VFNMS(LDK(KP587785252), Tg, VMUL(LDK(KP951056516), Th)));
cannam@127 149 Tb = VMUL(LDK(KP559016994), VSUB(T5, Ta));
cannam@127 150 Te = VFNMS(LDK(KP250000000), Td, Tc);
cannam@127 151 Tf = VADD(Tb, Te);
cannam@127 152 Tk = VSUB(Te, Tb);
cannam@127 153 ST(&(x[WS(rs, 1)]), VSUB(Tf, Ti), ms, &(x[WS(rs, 1)]));
cannam@127 154 ST(&(x[WS(rs, 3)]), VSUB(Tk, Tj), ms, &(x[WS(rs, 1)]));
cannam@127 155 ST(&(x[WS(rs, 4)]), VADD(Ti, Tf), ms, &(x[0]));
cannam@127 156 ST(&(x[WS(rs, 2)]), VADD(Tj, Tk), ms, &(x[0]));
cannam@127 157 }
cannam@127 158 }
cannam@127 159 }
cannam@127 160 VLEAVE();
cannam@127 161 }
cannam@127 162
cannam@127 163 static const tw_instr twinstr[] = {
cannam@127 164 VTW(0, 1),
cannam@127 165 VTW(0, 2),
cannam@127 166 VTW(0, 3),
cannam@127 167 VTW(0, 4),
cannam@127 168 {TW_NEXT, VL, 0}
cannam@127 169 };
cannam@127 170
cannam@127 171 static const ct_desc desc = { 5, XSIMD_STRING("t2fv_5"), twinstr, &GENUS, {17, 11, 3, 0}, 0, 0, 0 };
cannam@127 172
cannam@127 173 void XSIMD(codelet_t2fv_5) (planner *p) {
cannam@127 174 X(kdft_dit_register) (p, t2fv_5, &desc);
cannam@127 175 }
cannam@127 176 #endif /* HAVE_FMA */