annotate src/fftw-3.3.5/dft/simd/common/t2fv_16.c @ 127:7867fa7e1b6b

Current fftw source
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:43:11 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-dft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name t2fv_16 -include t2f.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 87 FP additions, 64 FP multiplications,
cannam@127 32 * (or, 53 additions, 30 multiplications, 34 fused multiply/add),
cannam@127 33 * 61 stack variables, 3 constants, and 32 memory accesses
cannam@127 34 */
cannam@127 35 #include "t2f.h"
cannam@127 36
cannam@127 37 static void t2fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 38 {
cannam@127 39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
cannam@127 40 DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
cannam@127 41 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@127 42 {
cannam@127 43 INT m;
cannam@127 44 R *x;
cannam@127 45 x = ri;
cannam@127 46 for (m = mb, W = W + (mb * ((TWVL / VL) * 30)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(16, rs)) {
cannam@127 47 V TO, Ta, TJ, TP, T14, Tq, T1i, T10, T1b, T1l, T13, T1c, TR, Tl, T15;
cannam@127 48 V Tv;
cannam@127 49 {
cannam@127 50 V Tc, TW, T4, T19, T9, TD, TI, Tj, TZ, T1a, Te, Th, Tn, Tr, Tu;
cannam@127 51 V Tp;
cannam@127 52 {
cannam@127 53 V T1, T2, T5, T7;
cannam@127 54 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@127 55 T2 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@127 56 T5 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@127 57 T7 = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
cannam@127 58 {
cannam@127 59 V Tz, TG, TB, TE;
cannam@127 60 Tz = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
cannam@127 61 TG = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
cannam@127 62 TB = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@127 63 TE = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@127 64 {
cannam@127 65 V Ti, TY, TX, Td, Tg, Tm, Tt, To;
cannam@127 66 {
cannam@127 67 V T3, T6, T8, TA, TH, TC, TF, Tb;
cannam@127 68 Tb = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@127 69 T3 = BYTWJ(&(W[TWVL * 14]), T2);
cannam@127 70 T6 = BYTWJ(&(W[TWVL * 6]), T5);
cannam@127 71 T8 = BYTWJ(&(W[TWVL * 22]), T7);
cannam@127 72 TA = BYTWJ(&(W[TWVL * 26]), Tz);
cannam@127 73 TH = BYTWJ(&(W[TWVL * 18]), TG);
cannam@127 74 TC = BYTWJ(&(W[TWVL * 10]), TB);
cannam@127 75 TF = BYTWJ(&(W[TWVL * 2]), TE);
cannam@127 76 Tc = BYTWJ(&(W[0]), Tb);
cannam@127 77 TW = VSUB(T1, T3);
cannam@127 78 T4 = VADD(T1, T3);
cannam@127 79 T19 = VSUB(T6, T8);
cannam@127 80 T9 = VADD(T6, T8);
cannam@127 81 Ti = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
cannam@127 82 TD = VADD(TA, TC);
cannam@127 83 TY = VSUB(TA, TC);
cannam@127 84 TI = VADD(TF, TH);
cannam@127 85 TX = VSUB(TF, TH);
cannam@127 86 }
cannam@127 87 Td = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@127 88 Tg = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@127 89 Tm = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
cannam@127 90 Tj = BYTWJ(&(W[TWVL * 24]), Ti);
cannam@127 91 Tt = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
cannam@127 92 To = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@127 93 TZ = VADD(TX, TY);
cannam@127 94 T1a = VSUB(TY, TX);
cannam@127 95 Te = BYTWJ(&(W[TWVL * 16]), Td);
cannam@127 96 Th = BYTWJ(&(W[TWVL * 8]), Tg);
cannam@127 97 Tn = BYTWJ(&(W[TWVL * 28]), Tm);
cannam@127 98 Tr = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@127 99 Tu = BYTWJ(&(W[TWVL * 20]), Tt);
cannam@127 100 Tp = BYTWJ(&(W[TWVL * 12]), To);
cannam@127 101 }
cannam@127 102 }
cannam@127 103 }
cannam@127 104 {
cannam@127 105 V Tf, T11, Tk, T12, Ts;
cannam@127 106 TO = VADD(T4, T9);
cannam@127 107 Ta = VSUB(T4, T9);
cannam@127 108 TJ = VSUB(TD, TI);
cannam@127 109 TP = VADD(TI, TD);
cannam@127 110 Tf = VADD(Tc, Te);
cannam@127 111 T11 = VSUB(Tc, Te);
cannam@127 112 Tk = VADD(Th, Tj);
cannam@127 113 T12 = VSUB(Th, Tj);
cannam@127 114 Ts = BYTWJ(&(W[TWVL * 4]), Tr);
cannam@127 115 T14 = VSUB(Tn, Tp);
cannam@127 116 Tq = VADD(Tn, Tp);
cannam@127 117 T1i = VFNMS(LDK(KP707106781), TZ, TW);
cannam@127 118 T10 = VFMA(LDK(KP707106781), TZ, TW);
cannam@127 119 T1b = VFNMS(LDK(KP707106781), T1a, T19);
cannam@127 120 T1l = VFMA(LDK(KP707106781), T1a, T19);
cannam@127 121 T13 = VFNMS(LDK(KP414213562), T12, T11);
cannam@127 122 T1c = VFMA(LDK(KP414213562), T11, T12);
cannam@127 123 TR = VADD(Tf, Tk);
cannam@127 124 Tl = VSUB(Tf, Tk);
cannam@127 125 T15 = VSUB(Tu, Ts);
cannam@127 126 Tv = VADD(Ts, Tu);
cannam@127 127 }
cannam@127 128 }
cannam@127 129 {
cannam@127 130 V T1d, T16, TS, Tw, TU, TQ;
cannam@127 131 T1d = VFMA(LDK(KP414213562), T14, T15);
cannam@127 132 T16 = VFNMS(LDK(KP414213562), T15, T14);
cannam@127 133 TS = VADD(Tq, Tv);
cannam@127 134 Tw = VSUB(Tq, Tv);
cannam@127 135 TU = VSUB(TO, TP);
cannam@127 136 TQ = VADD(TO, TP);
cannam@127 137 {
cannam@127 138 V T1e, T1j, T17, T1m;
cannam@127 139 T1e = VSUB(T1c, T1d);
cannam@127 140 T1j = VADD(T1c, T1d);
cannam@127 141 T17 = VADD(T13, T16);
cannam@127 142 T1m = VSUB(T16, T13);
cannam@127 143 {
cannam@127 144 V TV, TT, TK, Tx;
cannam@127 145 TV = VSUB(TS, TR);
cannam@127 146 TT = VADD(TR, TS);
cannam@127 147 TK = VSUB(Tw, Tl);
cannam@127 148 Tx = VADD(Tl, Tw);
cannam@127 149 {
cannam@127 150 V T1h, T1f, T1o, T1k;
cannam@127 151 T1h = VFMA(LDK(KP923879532), T1e, T1b);
cannam@127 152 T1f = VFNMS(LDK(KP923879532), T1e, T1b);
cannam@127 153 T1o = VFMA(LDK(KP923879532), T1j, T1i);
cannam@127 154 T1k = VFNMS(LDK(KP923879532), T1j, T1i);
cannam@127 155 {
cannam@127 156 V T1g, T18, T1p, T1n;
cannam@127 157 T1g = VFMA(LDK(KP923879532), T17, T10);
cannam@127 158 T18 = VFNMS(LDK(KP923879532), T17, T10);
cannam@127 159 T1p = VFMA(LDK(KP923879532), T1m, T1l);
cannam@127 160 T1n = VFNMS(LDK(KP923879532), T1m, T1l);
cannam@127 161 ST(&(x[WS(rs, 12)]), VFNMSI(TV, TU), ms, &(x[0]));
cannam@127 162 ST(&(x[WS(rs, 4)]), VFMAI(TV, TU), ms, &(x[0]));
cannam@127 163 ST(&(x[0]), VADD(TQ, TT), ms, &(x[0]));
cannam@127 164 ST(&(x[WS(rs, 8)]), VSUB(TQ, TT), ms, &(x[0]));
cannam@127 165 {
cannam@127 166 V TN, TL, TM, Ty;
cannam@127 167 TN = VFMA(LDK(KP707106781), TK, TJ);
cannam@127 168 TL = VFNMS(LDK(KP707106781), TK, TJ);
cannam@127 169 TM = VFMA(LDK(KP707106781), Tx, Ta);
cannam@127 170 Ty = VFNMS(LDK(KP707106781), Tx, Ta);
cannam@127 171 ST(&(x[WS(rs, 1)]), VFNMSI(T1h, T1g), ms, &(x[WS(rs, 1)]));
cannam@127 172 ST(&(x[WS(rs, 15)]), VFMAI(T1h, T1g), ms, &(x[WS(rs, 1)]));
cannam@127 173 ST(&(x[WS(rs, 7)]), VFMAI(T1f, T18), ms, &(x[WS(rs, 1)]));
cannam@127 174 ST(&(x[WS(rs, 9)]), VFNMSI(T1f, T18), ms, &(x[WS(rs, 1)]));
cannam@127 175 ST(&(x[WS(rs, 3)]), VFMAI(T1p, T1o), ms, &(x[WS(rs, 1)]));
cannam@127 176 ST(&(x[WS(rs, 13)]), VFNMSI(T1p, T1o), ms, &(x[WS(rs, 1)]));
cannam@127 177 ST(&(x[WS(rs, 11)]), VFMAI(T1n, T1k), ms, &(x[WS(rs, 1)]));
cannam@127 178 ST(&(x[WS(rs, 5)]), VFNMSI(T1n, T1k), ms, &(x[WS(rs, 1)]));
cannam@127 179 ST(&(x[WS(rs, 14)]), VFNMSI(TN, TM), ms, &(x[0]));
cannam@127 180 ST(&(x[WS(rs, 2)]), VFMAI(TN, TM), ms, &(x[0]));
cannam@127 181 ST(&(x[WS(rs, 10)]), VFMAI(TL, Ty), ms, &(x[0]));
cannam@127 182 ST(&(x[WS(rs, 6)]), VFNMSI(TL, Ty), ms, &(x[0]));
cannam@127 183 }
cannam@127 184 }
cannam@127 185 }
cannam@127 186 }
cannam@127 187 }
cannam@127 188 }
cannam@127 189 }
cannam@127 190 }
cannam@127 191 VLEAVE();
cannam@127 192 }
cannam@127 193
cannam@127 194 static const tw_instr twinstr[] = {
cannam@127 195 VTW(0, 1),
cannam@127 196 VTW(0, 2),
cannam@127 197 VTW(0, 3),
cannam@127 198 VTW(0, 4),
cannam@127 199 VTW(0, 5),
cannam@127 200 VTW(0, 6),
cannam@127 201 VTW(0, 7),
cannam@127 202 VTW(0, 8),
cannam@127 203 VTW(0, 9),
cannam@127 204 VTW(0, 10),
cannam@127 205 VTW(0, 11),
cannam@127 206 VTW(0, 12),
cannam@127 207 VTW(0, 13),
cannam@127 208 VTW(0, 14),
cannam@127 209 VTW(0, 15),
cannam@127 210 {TW_NEXT, VL, 0}
cannam@127 211 };
cannam@127 212
cannam@127 213 static const ct_desc desc = { 16, XSIMD_STRING("t2fv_16"), twinstr, &GENUS, {53, 30, 34, 0}, 0, 0, 0 };
cannam@127 214
cannam@127 215 void XSIMD(codelet_t2fv_16) (planner *p) {
cannam@127 216 X(kdft_dit_register) (p, t2fv_16, &desc);
cannam@127 217 }
cannam@127 218 #else /* HAVE_FMA */
cannam@127 219
cannam@127 220 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name t2fv_16 -include t2f.h */
cannam@127 221
cannam@127 222 /*
cannam@127 223 * This function contains 87 FP additions, 42 FP multiplications,
cannam@127 224 * (or, 83 additions, 38 multiplications, 4 fused multiply/add),
cannam@127 225 * 36 stack variables, 3 constants, and 32 memory accesses
cannam@127 226 */
cannam@127 227 #include "t2f.h"
cannam@127 228
cannam@127 229 static void t2fv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 230 {
cannam@127 231 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
cannam@127 232 DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
cannam@127 233 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@127 234 {
cannam@127 235 INT m;
cannam@127 236 R *x;
cannam@127 237 x = ri;
cannam@127 238 for (m = mb, W = W + (mb * ((TWVL / VL) * 30)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 30), MAKE_VOLATILE_STRIDE(16, rs)) {
cannam@127 239 V TJ, T10, TD, T11, T1b, T1c, Ty, TK, T16, T17, T18, Tb, TN, T13, T14;
cannam@127 240 V T15, Tm, TM, TG, TI, TH;
cannam@127 241 TG = LD(&(x[0]), ms, &(x[0]));
cannam@127 242 TH = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@127 243 TI = BYTWJ(&(W[TWVL * 14]), TH);
cannam@127 244 TJ = VSUB(TG, TI);
cannam@127 245 T10 = VADD(TG, TI);
cannam@127 246 {
cannam@127 247 V TA, TC, Tz, TB;
cannam@127 248 Tz = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@127 249 TA = BYTWJ(&(W[TWVL * 6]), Tz);
cannam@127 250 TB = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
cannam@127 251 TC = BYTWJ(&(W[TWVL * 22]), TB);
cannam@127 252 TD = VSUB(TA, TC);
cannam@127 253 T11 = VADD(TA, TC);
cannam@127 254 }
cannam@127 255 {
cannam@127 256 V Tp, Tw, Tr, Tu, Ts, Tx;
cannam@127 257 {
cannam@127 258 V To, Tv, Tq, Tt;
cannam@127 259 To = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
cannam@127 260 Tp = BYTWJ(&(W[TWVL * 26]), To);
cannam@127 261 Tv = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
cannam@127 262 Tw = BYTWJ(&(W[TWVL * 18]), Tv);
cannam@127 263 Tq = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@127 264 Tr = BYTWJ(&(W[TWVL * 10]), Tq);
cannam@127 265 Tt = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@127 266 Tu = BYTWJ(&(W[TWVL * 2]), Tt);
cannam@127 267 }
cannam@127 268 T1b = VADD(Tp, Tr);
cannam@127 269 T1c = VADD(Tu, Tw);
cannam@127 270 Ts = VSUB(Tp, Tr);
cannam@127 271 Tx = VSUB(Tu, Tw);
cannam@127 272 Ty = VMUL(LDK(KP707106781), VSUB(Ts, Tx));
cannam@127 273 TK = VMUL(LDK(KP707106781), VADD(Tx, Ts));
cannam@127 274 }
cannam@127 275 {
cannam@127 276 V T2, T9, T4, T7, T5, Ta;
cannam@127 277 {
cannam@127 278 V T1, T8, T3, T6;
cannam@127 279 T1 = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
cannam@127 280 T2 = BYTWJ(&(W[TWVL * 28]), T1);
cannam@127 281 T8 = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
cannam@127 282 T9 = BYTWJ(&(W[TWVL * 20]), T8);
cannam@127 283 T3 = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@127 284 T4 = BYTWJ(&(W[TWVL * 12]), T3);
cannam@127 285 T6 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@127 286 T7 = BYTWJ(&(W[TWVL * 4]), T6);
cannam@127 287 }
cannam@127 288 T16 = VADD(T2, T4);
cannam@127 289 T17 = VADD(T7, T9);
cannam@127 290 T18 = VSUB(T16, T17);
cannam@127 291 T5 = VSUB(T2, T4);
cannam@127 292 Ta = VSUB(T7, T9);
cannam@127 293 Tb = VFNMS(LDK(KP923879532), Ta, VMUL(LDK(KP382683432), T5));
cannam@127 294 TN = VFMA(LDK(KP923879532), T5, VMUL(LDK(KP382683432), Ta));
cannam@127 295 }
cannam@127 296 {
cannam@127 297 V Td, Tk, Tf, Ti, Tg, Tl;
cannam@127 298 {
cannam@127 299 V Tc, Tj, Te, Th;
cannam@127 300 Tc = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@127 301 Td = BYTWJ(&(W[0]), Tc);
cannam@127 302 Tj = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
cannam@127 303 Tk = BYTWJ(&(W[TWVL * 24]), Tj);
cannam@127 304 Te = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@127 305 Tf = BYTWJ(&(W[TWVL * 16]), Te);
cannam@127 306 Th = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@127 307 Ti = BYTWJ(&(W[TWVL * 8]), Th);
cannam@127 308 }
cannam@127 309 T13 = VADD(Td, Tf);
cannam@127 310 T14 = VADD(Ti, Tk);
cannam@127 311 T15 = VSUB(T13, T14);
cannam@127 312 Tg = VSUB(Td, Tf);
cannam@127 313 Tl = VSUB(Ti, Tk);
cannam@127 314 Tm = VFMA(LDK(KP382683432), Tg, VMUL(LDK(KP923879532), Tl));
cannam@127 315 TM = VFNMS(LDK(KP382683432), Tl, VMUL(LDK(KP923879532), Tg));
cannam@127 316 }
cannam@127 317 {
cannam@127 318 V T1a, T1g, T1f, T1h;
cannam@127 319 {
cannam@127 320 V T12, T19, T1d, T1e;
cannam@127 321 T12 = VSUB(T10, T11);
cannam@127 322 T19 = VMUL(LDK(KP707106781), VADD(T15, T18));
cannam@127 323 T1a = VADD(T12, T19);
cannam@127 324 T1g = VSUB(T12, T19);
cannam@127 325 T1d = VSUB(T1b, T1c);
cannam@127 326 T1e = VMUL(LDK(KP707106781), VSUB(T18, T15));
cannam@127 327 T1f = VBYI(VADD(T1d, T1e));
cannam@127 328 T1h = VBYI(VSUB(T1e, T1d));
cannam@127 329 }
cannam@127 330 ST(&(x[WS(rs, 14)]), VSUB(T1a, T1f), ms, &(x[0]));
cannam@127 331 ST(&(x[WS(rs, 6)]), VADD(T1g, T1h), ms, &(x[0]));
cannam@127 332 ST(&(x[WS(rs, 2)]), VADD(T1a, T1f), ms, &(x[0]));
cannam@127 333 ST(&(x[WS(rs, 10)]), VSUB(T1g, T1h), ms, &(x[0]));
cannam@127 334 }
cannam@127 335 {
cannam@127 336 V T1k, T1o, T1n, T1p;
cannam@127 337 {
cannam@127 338 V T1i, T1j, T1l, T1m;
cannam@127 339 T1i = VADD(T10, T11);
cannam@127 340 T1j = VADD(T1c, T1b);
cannam@127 341 T1k = VADD(T1i, T1j);
cannam@127 342 T1o = VSUB(T1i, T1j);
cannam@127 343 T1l = VADD(T13, T14);
cannam@127 344 T1m = VADD(T16, T17);
cannam@127 345 T1n = VADD(T1l, T1m);
cannam@127 346 T1p = VBYI(VSUB(T1m, T1l));
cannam@127 347 }
cannam@127 348 ST(&(x[WS(rs, 8)]), VSUB(T1k, T1n), ms, &(x[0]));
cannam@127 349 ST(&(x[WS(rs, 4)]), VADD(T1o, T1p), ms, &(x[0]));
cannam@127 350 ST(&(x[0]), VADD(T1k, T1n), ms, &(x[0]));
cannam@127 351 ST(&(x[WS(rs, 12)]), VSUB(T1o, T1p), ms, &(x[0]));
cannam@127 352 }
cannam@127 353 {
cannam@127 354 V TF, TQ, TP, TR;
cannam@127 355 {
cannam@127 356 V Tn, TE, TL, TO;
cannam@127 357 Tn = VSUB(Tb, Tm);
cannam@127 358 TE = VSUB(Ty, TD);
cannam@127 359 TF = VBYI(VSUB(Tn, TE));
cannam@127 360 TQ = VBYI(VADD(TE, Tn));
cannam@127 361 TL = VADD(TJ, TK);
cannam@127 362 TO = VADD(TM, TN);
cannam@127 363 TP = VSUB(TL, TO);
cannam@127 364 TR = VADD(TL, TO);
cannam@127 365 }
cannam@127 366 ST(&(x[WS(rs, 7)]), VADD(TF, TP), ms, &(x[WS(rs, 1)]));
cannam@127 367 ST(&(x[WS(rs, 15)]), VSUB(TR, TQ), ms, &(x[WS(rs, 1)]));
cannam@127 368 ST(&(x[WS(rs, 9)]), VSUB(TP, TF), ms, &(x[WS(rs, 1)]));
cannam@127 369 ST(&(x[WS(rs, 1)]), VADD(TQ, TR), ms, &(x[WS(rs, 1)]));
cannam@127 370 }
cannam@127 371 {
cannam@127 372 V TU, TY, TX, TZ;
cannam@127 373 {
cannam@127 374 V TS, TT, TV, TW;
cannam@127 375 TS = VSUB(TJ, TK);
cannam@127 376 TT = VADD(Tm, Tb);
cannam@127 377 TU = VADD(TS, TT);
cannam@127 378 TY = VSUB(TS, TT);
cannam@127 379 TV = VADD(TD, Ty);
cannam@127 380 TW = VSUB(TN, TM);
cannam@127 381 TX = VBYI(VADD(TV, TW));
cannam@127 382 TZ = VBYI(VSUB(TW, TV));
cannam@127 383 }
cannam@127 384 ST(&(x[WS(rs, 13)]), VSUB(TU, TX), ms, &(x[WS(rs, 1)]));
cannam@127 385 ST(&(x[WS(rs, 5)]), VADD(TY, TZ), ms, &(x[WS(rs, 1)]));
cannam@127 386 ST(&(x[WS(rs, 3)]), VADD(TU, TX), ms, &(x[WS(rs, 1)]));
cannam@127 387 ST(&(x[WS(rs, 11)]), VSUB(TY, TZ), ms, &(x[WS(rs, 1)]));
cannam@127 388 }
cannam@127 389 }
cannam@127 390 }
cannam@127 391 VLEAVE();
cannam@127 392 }
cannam@127 393
cannam@127 394 static const tw_instr twinstr[] = {
cannam@127 395 VTW(0, 1),
cannam@127 396 VTW(0, 2),
cannam@127 397 VTW(0, 3),
cannam@127 398 VTW(0, 4),
cannam@127 399 VTW(0, 5),
cannam@127 400 VTW(0, 6),
cannam@127 401 VTW(0, 7),
cannam@127 402 VTW(0, 8),
cannam@127 403 VTW(0, 9),
cannam@127 404 VTW(0, 10),
cannam@127 405 VTW(0, 11),
cannam@127 406 VTW(0, 12),
cannam@127 407 VTW(0, 13),
cannam@127 408 VTW(0, 14),
cannam@127 409 VTW(0, 15),
cannam@127 410 {TW_NEXT, VL, 0}
cannam@127 411 };
cannam@127 412
cannam@127 413 static const ct_desc desc = { 16, XSIMD_STRING("t2fv_16"), twinstr, &GENUS, {83, 38, 4, 0}, 0, 0, 0 };
cannam@127 414
cannam@127 415 void XSIMD(codelet_t2fv_16) (planner *p) {
cannam@127 416 X(kdft_dit_register) (p, t2fv_16, &desc);
cannam@127 417 }
cannam@127 418 #endif /* HAVE_FMA */