annotate src/fftw-3.3.5/dft/simd/common/t1fv_4.c @ 127:7867fa7e1b6b

Current fftw source
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:41:54 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-dft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 4 -name t1fv_4 -include t1f.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 11 FP additions, 8 FP multiplications,
cannam@127 32 * (or, 9 additions, 6 multiplications, 2 fused multiply/add),
cannam@127 33 * 13 stack variables, 0 constants, and 8 memory accesses
cannam@127 34 */
cannam@127 35 #include "t1f.h"
cannam@127 36
cannam@127 37 static void t1fv_4(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 38 {
cannam@127 39 {
cannam@127 40 INT m;
cannam@127 41 R *x;
cannam@127 42 x = ri;
cannam@127 43 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(4, rs)) {
cannam@127 44 V T1, T7, T2, T5, T8, T3, T6;
cannam@127 45 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@127 46 T7 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@127 47 T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@127 48 T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@127 49 T8 = BYTWJ(&(W[TWVL * 4]), T7);
cannam@127 50 T3 = BYTWJ(&(W[TWVL * 2]), T2);
cannam@127 51 T6 = BYTWJ(&(W[0]), T5);
cannam@127 52 {
cannam@127 53 V Ta, T4, Tb, T9;
cannam@127 54 Ta = VADD(T1, T3);
cannam@127 55 T4 = VSUB(T1, T3);
cannam@127 56 Tb = VADD(T6, T8);
cannam@127 57 T9 = VSUB(T6, T8);
cannam@127 58 ST(&(x[0]), VADD(Ta, Tb), ms, &(x[0]));
cannam@127 59 ST(&(x[WS(rs, 2)]), VSUB(Ta, Tb), ms, &(x[0]));
cannam@127 60 ST(&(x[WS(rs, 3)]), VFMAI(T9, T4), ms, &(x[WS(rs, 1)]));
cannam@127 61 ST(&(x[WS(rs, 1)]), VFNMSI(T9, T4), ms, &(x[WS(rs, 1)]));
cannam@127 62 }
cannam@127 63 }
cannam@127 64 }
cannam@127 65 VLEAVE();
cannam@127 66 }
cannam@127 67
cannam@127 68 static const tw_instr twinstr[] = {
cannam@127 69 VTW(0, 1),
cannam@127 70 VTW(0, 2),
cannam@127 71 VTW(0, 3),
cannam@127 72 {TW_NEXT, VL, 0}
cannam@127 73 };
cannam@127 74
cannam@127 75 static const ct_desc desc = { 4, XSIMD_STRING("t1fv_4"), twinstr, &GENUS, {9, 6, 2, 0}, 0, 0, 0 };
cannam@127 76
cannam@127 77 void XSIMD(codelet_t1fv_4) (planner *p) {
cannam@127 78 X(kdft_dit_register) (p, t1fv_4, &desc);
cannam@127 79 }
cannam@127 80 #else /* HAVE_FMA */
cannam@127 81
cannam@127 82 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 4 -name t1fv_4 -include t1f.h */
cannam@127 83
cannam@127 84 /*
cannam@127 85 * This function contains 11 FP additions, 6 FP multiplications,
cannam@127 86 * (or, 11 additions, 6 multiplications, 0 fused multiply/add),
cannam@127 87 * 13 stack variables, 0 constants, and 8 memory accesses
cannam@127 88 */
cannam@127 89 #include "t1f.h"
cannam@127 90
cannam@127 91 static void t1fv_4(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 92 {
cannam@127 93 {
cannam@127 94 INT m;
cannam@127 95 R *x;
cannam@127 96 x = ri;
cannam@127 97 for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(4, rs)) {
cannam@127 98 V T1, T8, T3, T6, T7, T2, T5;
cannam@127 99 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@127 100 T7 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@127 101 T8 = BYTWJ(&(W[TWVL * 4]), T7);
cannam@127 102 T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@127 103 T3 = BYTWJ(&(W[TWVL * 2]), T2);
cannam@127 104 T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@127 105 T6 = BYTWJ(&(W[0]), T5);
cannam@127 106 {
cannam@127 107 V T4, T9, Ta, Tb;
cannam@127 108 T4 = VSUB(T1, T3);
cannam@127 109 T9 = VBYI(VSUB(T6, T8));
cannam@127 110 ST(&(x[WS(rs, 1)]), VSUB(T4, T9), ms, &(x[WS(rs, 1)]));
cannam@127 111 ST(&(x[WS(rs, 3)]), VADD(T4, T9), ms, &(x[WS(rs, 1)]));
cannam@127 112 Ta = VADD(T1, T3);
cannam@127 113 Tb = VADD(T6, T8);
cannam@127 114 ST(&(x[WS(rs, 2)]), VSUB(Ta, Tb), ms, &(x[0]));
cannam@127 115 ST(&(x[0]), VADD(Ta, Tb), ms, &(x[0]));
cannam@127 116 }
cannam@127 117 }
cannam@127 118 }
cannam@127 119 VLEAVE();
cannam@127 120 }
cannam@127 121
cannam@127 122 static const tw_instr twinstr[] = {
cannam@127 123 VTW(0, 1),
cannam@127 124 VTW(0, 2),
cannam@127 125 VTW(0, 3),
cannam@127 126 {TW_NEXT, VL, 0}
cannam@127 127 };
cannam@127 128
cannam@127 129 static const ct_desc desc = { 4, XSIMD_STRING("t1fv_4"), twinstr, &GENUS, {11, 6, 0, 0}, 0, 0, 0 };
cannam@127 130
cannam@127 131 void XSIMD(codelet_t1fv_4) (planner *p) {
cannam@127 132 X(kdft_dit_register) (p, t1fv_4, &desc);
cannam@127 133 }
cannam@127 134 #endif /* HAVE_FMA */