annotate src/fftw-3.3.5/dft/simd/common/t1fv_12.c @ 127:7867fa7e1b6b

Current fftw source
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:42:01 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-dft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1fv_12 -include t1f.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 59 FP additions, 42 FP multiplications,
cannam@127 32 * (or, 41 additions, 24 multiplications, 18 fused multiply/add),
cannam@127 33 * 41 stack variables, 2 constants, and 24 memory accesses
cannam@127 34 */
cannam@127 35 #include "t1f.h"
cannam@127 36
cannam@127 37 static void t1fv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 38 {
cannam@127 39 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@127 40 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 41 {
cannam@127 42 INT m;
cannam@127 43 R *x;
cannam@127 44 x = ri;
cannam@127 45 for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) {
cannam@127 46 V Tq, Ti, T7, TQ, Tu, TA, TU, Tk, TR, Tf, TE, TM;
cannam@127 47 {
cannam@127 48 V T9, TC, Tj, TD, Te;
cannam@127 49 {
cannam@127 50 V T1, T4, T2, Tm, Tx, To;
cannam@127 51 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@127 52 T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@127 53 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@127 54 Tm = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@127 55 Tx = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@127 56 To = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@127 57 {
cannam@127 58 V T5, T3, Tn, Ty, Tp, Td, Tb, T8, Tc, Ta;
cannam@127 59 T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@127 60 Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@127 61 Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
cannam@127 62 T5 = BYTWJ(&(W[TWVL * 14]), T4);
cannam@127 63 T3 = BYTWJ(&(W[TWVL * 6]), T2);
cannam@127 64 Tn = BYTWJ(&(W[0]), Tm);
cannam@127 65 Ty = BYTWJ(&(W[TWVL * 16]), Tx);
cannam@127 66 Tp = BYTWJ(&(W[TWVL * 8]), To);
cannam@127 67 T9 = BYTWJ(&(W[TWVL * 10]), T8);
cannam@127 68 Td = BYTWJ(&(W[TWVL * 2]), Tc);
cannam@127 69 Tb = BYTWJ(&(W[TWVL * 18]), Ta);
cannam@127 70 {
cannam@127 71 V Th, T6, Tt, Tz;
cannam@127 72 Th = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
cannam@127 73 TC = VSUB(T5, T3);
cannam@127 74 T6 = VADD(T3, T5);
cannam@127 75 Tt = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@127 76 Tz = VADD(Tn, Tp);
cannam@127 77 Tq = VSUB(Tn, Tp);
cannam@127 78 Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@127 79 TD = VSUB(Td, Tb);
cannam@127 80 Te = VADD(Tb, Td);
cannam@127 81 Ti = BYTWJ(&(W[TWVL * 20]), Th);
cannam@127 82 T7 = VFNMS(LDK(KP500000000), T6, T1);
cannam@127 83 TQ = VADD(T1, T6);
cannam@127 84 Tu = BYTWJ(&(W[TWVL * 4]), Tt);
cannam@127 85 TA = VFNMS(LDK(KP500000000), Tz, Ty);
cannam@127 86 TU = VADD(Ty, Tz);
cannam@127 87 }
cannam@127 88 }
cannam@127 89 }
cannam@127 90 Tk = BYTWJ(&(W[TWVL * 12]), Tj);
cannam@127 91 TR = VADD(T9, Te);
cannam@127 92 Tf = VFNMS(LDK(KP500000000), Te, T9);
cannam@127 93 TE = VSUB(TC, TD);
cannam@127 94 TM = VADD(TC, TD);
cannam@127 95 }
cannam@127 96 {
cannam@127 97 V Tv, Tl, TI, Tg, TW, TS;
cannam@127 98 Tv = VADD(Tk, Ti);
cannam@127 99 Tl = VSUB(Ti, Tk);
cannam@127 100 TI = VADD(T7, Tf);
cannam@127 101 Tg = VSUB(T7, Tf);
cannam@127 102 TW = VADD(TQ, TR);
cannam@127 103 TS = VSUB(TQ, TR);
cannam@127 104 {
cannam@127 105 V TT, Tw, TL, Tr;
cannam@127 106 TT = VADD(Tu, Tv);
cannam@127 107 Tw = VFNMS(LDK(KP500000000), Tv, Tu);
cannam@127 108 TL = VSUB(Tl, Tq);
cannam@127 109 Tr = VADD(Tl, Tq);
cannam@127 110 {
cannam@127 111 V TP, TN, TG, Ts, TO, TK, TH, TF;
cannam@127 112 {
cannam@127 113 V TX, TV, TJ, TB;
cannam@127 114 TX = VADD(TT, TU);
cannam@127 115 TV = VSUB(TT, TU);
cannam@127 116 TJ = VADD(Tw, TA);
cannam@127 117 TB = VSUB(Tw, TA);
cannam@127 118 TP = VMUL(LDK(KP866025403), VADD(TM, TL));
cannam@127 119 TN = VMUL(LDK(KP866025403), VSUB(TL, TM));
cannam@127 120 TG = VFNMS(LDK(KP866025403), Tr, Tg);
cannam@127 121 Ts = VFMA(LDK(KP866025403), Tr, Tg);
cannam@127 122 ST(&(x[WS(rs, 6)]), VSUB(TW, TX), ms, &(x[0]));
cannam@127 123 ST(&(x[0]), VADD(TW, TX), ms, &(x[0]));
cannam@127 124 ST(&(x[WS(rs, 3)]), VFMAI(TV, TS), ms, &(x[WS(rs, 1)]));
cannam@127 125 ST(&(x[WS(rs, 9)]), VFNMSI(TV, TS), ms, &(x[WS(rs, 1)]));
cannam@127 126 TO = VADD(TI, TJ);
cannam@127 127 TK = VSUB(TI, TJ);
cannam@127 128 TH = VFMA(LDK(KP866025403), TE, TB);
cannam@127 129 TF = VFNMS(LDK(KP866025403), TE, TB);
cannam@127 130 }
cannam@127 131 ST(&(x[WS(rs, 4)]), VFMAI(TP, TO), ms, &(x[0]));
cannam@127 132 ST(&(x[WS(rs, 8)]), VFNMSI(TP, TO), ms, &(x[0]));
cannam@127 133 ST(&(x[WS(rs, 10)]), VFNMSI(TN, TK), ms, &(x[0]));
cannam@127 134 ST(&(x[WS(rs, 2)]), VFMAI(TN, TK), ms, &(x[0]));
cannam@127 135 ST(&(x[WS(rs, 5)]), VFNMSI(TH, TG), ms, &(x[WS(rs, 1)]));
cannam@127 136 ST(&(x[WS(rs, 7)]), VFMAI(TH, TG), ms, &(x[WS(rs, 1)]));
cannam@127 137 ST(&(x[WS(rs, 11)]), VFMAI(TF, Ts), ms, &(x[WS(rs, 1)]));
cannam@127 138 ST(&(x[WS(rs, 1)]), VFNMSI(TF, Ts), ms, &(x[WS(rs, 1)]));
cannam@127 139 }
cannam@127 140 }
cannam@127 141 }
cannam@127 142 }
cannam@127 143 }
cannam@127 144 VLEAVE();
cannam@127 145 }
cannam@127 146
cannam@127 147 static const tw_instr twinstr[] = {
cannam@127 148 VTW(0, 1),
cannam@127 149 VTW(0, 2),
cannam@127 150 VTW(0, 3),
cannam@127 151 VTW(0, 4),
cannam@127 152 VTW(0, 5),
cannam@127 153 VTW(0, 6),
cannam@127 154 VTW(0, 7),
cannam@127 155 VTW(0, 8),
cannam@127 156 VTW(0, 9),
cannam@127 157 VTW(0, 10),
cannam@127 158 VTW(0, 11),
cannam@127 159 {TW_NEXT, VL, 0}
cannam@127 160 };
cannam@127 161
cannam@127 162 static const ct_desc desc = { 12, XSIMD_STRING("t1fv_12"), twinstr, &GENUS, {41, 24, 18, 0}, 0, 0, 0 };
cannam@127 163
cannam@127 164 void XSIMD(codelet_t1fv_12) (planner *p) {
cannam@127 165 X(kdft_dit_register) (p, t1fv_12, &desc);
cannam@127 166 }
cannam@127 167 #else /* HAVE_FMA */
cannam@127 168
cannam@127 169 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 12 -name t1fv_12 -include t1f.h */
cannam@127 170
cannam@127 171 /*
cannam@127 172 * This function contains 59 FP additions, 30 FP multiplications,
cannam@127 173 * (or, 55 additions, 26 multiplications, 4 fused multiply/add),
cannam@127 174 * 28 stack variables, 2 constants, and 24 memory accesses
cannam@127 175 */
cannam@127 176 #include "t1f.h"
cannam@127 177
cannam@127 178 static void t1fv_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 179 {
cannam@127 180 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@127 181 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 182 {
cannam@127 183 INT m;
cannam@127 184 R *x;
cannam@127 185 x = ri;
cannam@127 186 for (m = mb, W = W + (mb * ((TWVL / VL) * 22)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 22), MAKE_VOLATILE_STRIDE(12, rs)) {
cannam@127 187 V T1, TH, T6, TA, Tq, TE, Tv, TL, T9, TI, Te, TB, Ti, TD, Tn;
cannam@127 188 V TK;
cannam@127 189 {
cannam@127 190 V T5, T3, T4, T2;
cannam@127 191 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@127 192 T4 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@127 193 T5 = BYTWJ(&(W[TWVL * 14]), T4);
cannam@127 194 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@127 195 T3 = BYTWJ(&(W[TWVL * 6]), T2);
cannam@127 196 TH = VSUB(T5, T3);
cannam@127 197 T6 = VADD(T3, T5);
cannam@127 198 TA = VFNMS(LDK(KP500000000), T6, T1);
cannam@127 199 }
cannam@127 200 {
cannam@127 201 V Tu, Ts, Tp, Tt, Tr;
cannam@127 202 Tp = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
cannam@127 203 Tq = BYTWJ(&(W[TWVL * 16]), Tp);
cannam@127 204 Tt = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@127 205 Tu = BYTWJ(&(W[TWVL * 8]), Tt);
cannam@127 206 Tr = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@127 207 Ts = BYTWJ(&(W[0]), Tr);
cannam@127 208 TE = VSUB(Tu, Ts);
cannam@127 209 Tv = VADD(Ts, Tu);
cannam@127 210 TL = VFNMS(LDK(KP500000000), Tv, Tq);
cannam@127 211 }
cannam@127 212 {
cannam@127 213 V Td, Tb, T8, Tc, Ta;
cannam@127 214 T8 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@127 215 T9 = BYTWJ(&(W[TWVL * 10]), T8);
cannam@127 216 Tc = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@127 217 Td = BYTWJ(&(W[TWVL * 2]), Tc);
cannam@127 218 Ta = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
cannam@127 219 Tb = BYTWJ(&(W[TWVL * 18]), Ta);
cannam@127 220 TI = VSUB(Td, Tb);
cannam@127 221 Te = VADD(Tb, Td);
cannam@127 222 TB = VFNMS(LDK(KP500000000), Te, T9);
cannam@127 223 }
cannam@127 224 {
cannam@127 225 V Tm, Tk, Th, Tl, Tj;
cannam@127 226 Th = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@127 227 Ti = BYTWJ(&(W[TWVL * 4]), Th);
cannam@127 228 Tl = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
cannam@127 229 Tm = BYTWJ(&(W[TWVL * 20]), Tl);
cannam@127 230 Tj = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@127 231 Tk = BYTWJ(&(W[TWVL * 12]), Tj);
cannam@127 232 TD = VSUB(Tm, Tk);
cannam@127 233 Tn = VADD(Tk, Tm);
cannam@127 234 TK = VFNMS(LDK(KP500000000), Tn, Ti);
cannam@127 235 }
cannam@127 236 {
cannam@127 237 V Tg, Ty, Tx, Tz;
cannam@127 238 {
cannam@127 239 V T7, Tf, To, Tw;
cannam@127 240 T7 = VADD(T1, T6);
cannam@127 241 Tf = VADD(T9, Te);
cannam@127 242 Tg = VSUB(T7, Tf);
cannam@127 243 Ty = VADD(T7, Tf);
cannam@127 244 To = VADD(Ti, Tn);
cannam@127 245 Tw = VADD(Tq, Tv);
cannam@127 246 Tx = VBYI(VSUB(To, Tw));
cannam@127 247 Tz = VADD(To, Tw);
cannam@127 248 }
cannam@127 249 ST(&(x[WS(rs, 9)]), VSUB(Tg, Tx), ms, &(x[WS(rs, 1)]));
cannam@127 250 ST(&(x[0]), VADD(Ty, Tz), ms, &(x[0]));
cannam@127 251 ST(&(x[WS(rs, 3)]), VADD(Tg, Tx), ms, &(x[WS(rs, 1)]));
cannam@127 252 ST(&(x[WS(rs, 6)]), VSUB(Ty, Tz), ms, &(x[0]));
cannam@127 253 }
cannam@127 254 {
cannam@127 255 V TS, TW, TV, TX;
cannam@127 256 {
cannam@127 257 V TQ, TR, TT, TU;
cannam@127 258 TQ = VADD(TA, TB);
cannam@127 259 TR = VADD(TK, TL);
cannam@127 260 TS = VSUB(TQ, TR);
cannam@127 261 TW = VADD(TQ, TR);
cannam@127 262 TT = VADD(TD, TE);
cannam@127 263 TU = VADD(TH, TI);
cannam@127 264 TV = VBYI(VMUL(LDK(KP866025403), VSUB(TT, TU)));
cannam@127 265 TX = VBYI(VMUL(LDK(KP866025403), VADD(TU, TT)));
cannam@127 266 }
cannam@127 267 ST(&(x[WS(rs, 10)]), VSUB(TS, TV), ms, &(x[0]));
cannam@127 268 ST(&(x[WS(rs, 4)]), VADD(TW, TX), ms, &(x[0]));
cannam@127 269 ST(&(x[WS(rs, 2)]), VADD(TS, TV), ms, &(x[0]));
cannam@127 270 ST(&(x[WS(rs, 8)]), VSUB(TW, TX), ms, &(x[0]));
cannam@127 271 }
cannam@127 272 {
cannam@127 273 V TG, TP, TN, TO;
cannam@127 274 {
cannam@127 275 V TC, TF, TJ, TM;
cannam@127 276 TC = VSUB(TA, TB);
cannam@127 277 TF = VMUL(LDK(KP866025403), VSUB(TD, TE));
cannam@127 278 TG = VSUB(TC, TF);
cannam@127 279 TP = VADD(TC, TF);
cannam@127 280 TJ = VMUL(LDK(KP866025403), VSUB(TH, TI));
cannam@127 281 TM = VSUB(TK, TL);
cannam@127 282 TN = VBYI(VADD(TJ, TM));
cannam@127 283 TO = VBYI(VSUB(TJ, TM));
cannam@127 284 }
cannam@127 285 ST(&(x[WS(rs, 5)]), VSUB(TG, TN), ms, &(x[WS(rs, 1)]));
cannam@127 286 ST(&(x[WS(rs, 11)]), VSUB(TP, TO), ms, &(x[WS(rs, 1)]));
cannam@127 287 ST(&(x[WS(rs, 7)]), VADD(TN, TG), ms, &(x[WS(rs, 1)]));
cannam@127 288 ST(&(x[WS(rs, 1)]), VADD(TO, TP), ms, &(x[WS(rs, 1)]));
cannam@127 289 }
cannam@127 290 }
cannam@127 291 }
cannam@127 292 VLEAVE();
cannam@127 293 }
cannam@127 294
cannam@127 295 static const tw_instr twinstr[] = {
cannam@127 296 VTW(0, 1),
cannam@127 297 VTW(0, 2),
cannam@127 298 VTW(0, 3),
cannam@127 299 VTW(0, 4),
cannam@127 300 VTW(0, 5),
cannam@127 301 VTW(0, 6),
cannam@127 302 VTW(0, 7),
cannam@127 303 VTW(0, 8),
cannam@127 304 VTW(0, 9),
cannam@127 305 VTW(0, 10),
cannam@127 306 VTW(0, 11),
cannam@127 307 {TW_NEXT, VL, 0}
cannam@127 308 };
cannam@127 309
cannam@127 310 static const ct_desc desc = { 12, XSIMD_STRING("t1fv_12"), twinstr, &GENUS, {55, 26, 4, 0}, 0, 0, 0 };
cannam@127 311
cannam@127 312 void XSIMD(codelet_t1fv_12) (planner *p) {
cannam@127 313 X(kdft_dit_register) (p, t1fv_12, &desc);
cannam@127 314 }
cannam@127 315 #endif /* HAVE_FMA */