annotate src/fftw-3.3.5/dft/simd/common/t1fuv_9.c @ 127:7867fa7e1b6b

Current fftw source
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:41:51 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-dft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1fuv_9 -include t1fu.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 54 FP additions, 54 FP multiplications,
cannam@127 32 * (or, 20 additions, 20 multiplications, 34 fused multiply/add),
cannam@127 33 * 67 stack variables, 19 constants, and 18 memory accesses
cannam@127 34 */
cannam@127 35 #include "t1fu.h"
cannam@127 36
cannam@127 37 static void t1fuv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 38 {
cannam@127 39 DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
cannam@127 40 DVK(KP826351822, +0.826351822333069651148283373230685203999624323);
cannam@127 41 DVK(KP879385241, +0.879385241571816768108218554649462939872416269);
cannam@127 42 DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
cannam@127 43 DVK(KP666666666, +0.666666666666666666666666666666666666666666667);
cannam@127 44 DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
cannam@127 45 DVK(KP907603734, +0.907603734547952313649323976213898122064543220);
cannam@127 46 DVK(KP420276625, +0.420276625461206169731530603237061658838781920);
cannam@127 47 DVK(KP673648177, +0.673648177666930348851716626769314796000375677);
cannam@127 48 DVK(KP898197570, +0.898197570222573798468955502359086394667167570);
cannam@127 49 DVK(KP347296355, +0.347296355333860697703433253538629592000751354);
cannam@127 50 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@127 51 DVK(KP439692620, +0.439692620785908384054109277324731469936208134);
cannam@127 52 DVK(KP203604859, +0.203604859554852403062088995281827210665664861);
cannam@127 53 DVK(KP152703644, +0.152703644666139302296566746461370407999248646);
cannam@127 54 DVK(KP586256827, +0.586256827714544512072145703099641959914944179);
cannam@127 55 DVK(KP968908795, +0.968908795874236621082202410917456709164223497);
cannam@127 56 DVK(KP726681596, +0.726681596905677465811651808188092531873167623);
cannam@127 57 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 58 {
cannam@127 59 INT m;
cannam@127 60 R *x;
cannam@127 61 x = ri;
cannam@127 62 for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(9, rs)) {
cannam@127 63 V T1, T3, T5, T9, Th, Tb, Td, Tj, Tl, TD, T6;
cannam@127 64 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@127 65 {
cannam@127 66 V T2, T4, T8, Tg;
cannam@127 67 T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@127 68 T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@127 69 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@127 70 Tg = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@127 71 {
cannam@127 72 V Ta, Tc, Ti, Tk;
cannam@127 73 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@127 74 Tc = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@127 75 Ti = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@127 76 Tk = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@127 77 T3 = BYTWJ(&(W[TWVL * 4]), T2);
cannam@127 78 T5 = BYTWJ(&(W[TWVL * 10]), T4);
cannam@127 79 T9 = BYTWJ(&(W[0]), T8);
cannam@127 80 Th = BYTWJ(&(W[TWVL * 2]), Tg);
cannam@127 81 Tb = BYTWJ(&(W[TWVL * 6]), Ta);
cannam@127 82 Td = BYTWJ(&(W[TWVL * 12]), Tc);
cannam@127 83 Tj = BYTWJ(&(W[TWVL * 8]), Ti);
cannam@127 84 Tl = BYTWJ(&(W[TWVL * 14]), Tk);
cannam@127 85 }
cannam@127 86 }
cannam@127 87 TD = VSUB(T5, T3);
cannam@127 88 T6 = VADD(T3, T5);
cannam@127 89 {
cannam@127 90 V Tt, Te, Tu, Tm, Tr, T7;
cannam@127 91 Tt = VSUB(Tb, Td);
cannam@127 92 Te = VADD(Tb, Td);
cannam@127 93 Tu = VSUB(Tl, Tj);
cannam@127 94 Tm = VADD(Tj, Tl);
cannam@127 95 Tr = VFNMS(LDK(KP500000000), T6, T1);
cannam@127 96 T7 = VADD(T1, T6);
cannam@127 97 {
cannam@127 98 V Tv, Tf, Ts, Tn;
cannam@127 99 Tv = VFNMS(LDK(KP500000000), Te, T9);
cannam@127 100 Tf = VADD(T9, Te);
cannam@127 101 Ts = VFNMS(LDK(KP500000000), Tm, Th);
cannam@127 102 Tn = VADD(Th, Tm);
cannam@127 103 {
cannam@127 104 V TG, TK, Tw, TJ, TF, TA, To, Tq;
cannam@127 105 TG = VFNMS(LDK(KP726681596), Tt, Tv);
cannam@127 106 TK = VFMA(LDK(KP968908795), Tv, Tt);
cannam@127 107 Tw = VFNMS(LDK(KP586256827), Tv, Tu);
cannam@127 108 TJ = VFNMS(LDK(KP152703644), Tu, Ts);
cannam@127 109 TF = VFMA(LDK(KP203604859), Ts, Tu);
cannam@127 110 TA = VFNMS(LDK(KP439692620), Tt, Ts);
cannam@127 111 To = VADD(Tf, Tn);
cannam@127 112 Tq = VMUL(LDK(KP866025403), VSUB(Tn, Tf));
cannam@127 113 {
cannam@127 114 V TQ, TH, TL, TN, TB, Tp, Ty, TI, Tx;
cannam@127 115 Tx = VFNMS(LDK(KP347296355), Tw, Tt);
cannam@127 116 TQ = VFNMS(LDK(KP898197570), TG, TF);
cannam@127 117 TH = VFMA(LDK(KP898197570), TG, TF);
cannam@127 118 TL = VFMA(LDK(KP673648177), TK, TJ);
cannam@127 119 TN = VFNMS(LDK(KP673648177), TK, TJ);
cannam@127 120 TB = VFNMS(LDK(KP420276625), TA, Tu);
cannam@127 121 ST(&(x[0]), VADD(T7, To), ms, &(x[0]));
cannam@127 122 Tp = VFNMS(LDK(KP500000000), To, T7);
cannam@127 123 Ty = VFNMS(LDK(KP907603734), Tx, Ts);
cannam@127 124 TI = VFMA(LDK(KP852868531), TH, Tr);
cannam@127 125 {
cannam@127 126 V TO, TR, TM, TC, Tz, TP, TS, TE;
cannam@127 127 TO = VFNMS(LDK(KP500000000), TH, TN);
cannam@127 128 TR = VFMA(LDK(KP666666666), TL, TQ);
cannam@127 129 TM = VMUL(LDK(KP984807753), VFNMS(LDK(KP879385241), TD, TL));
cannam@127 130 TC = VFNMS(LDK(KP826351822), TB, Tv);
cannam@127 131 ST(&(x[WS(rs, 6)]), VFNMSI(Tq, Tp), ms, &(x[0]));
cannam@127 132 ST(&(x[WS(rs, 3)]), VFMAI(Tq, Tp), ms, &(x[WS(rs, 1)]));
cannam@127 133 Tz = VFNMS(LDK(KP939692620), Ty, Tr);
cannam@127 134 TP = VFMA(LDK(KP852868531), TO, Tr);
cannam@127 135 TS = VMUL(LDK(KP866025403), VFMA(LDK(KP852868531), TR, TD));
cannam@127 136 ST(&(x[WS(rs, 8)]), VFMAI(TM, TI), ms, &(x[0]));
cannam@127 137 ST(&(x[WS(rs, 1)]), VFNMSI(TM, TI), ms, &(x[WS(rs, 1)]));
cannam@127 138 TE = VMUL(LDK(KP984807753), VFMA(LDK(KP879385241), TD, TC));
cannam@127 139 ST(&(x[WS(rs, 4)]), VFMAI(TS, TP), ms, &(x[0]));
cannam@127 140 ST(&(x[WS(rs, 5)]), VFNMSI(TS, TP), ms, &(x[WS(rs, 1)]));
cannam@127 141 ST(&(x[WS(rs, 7)]), VFMAI(TE, Tz), ms, &(x[WS(rs, 1)]));
cannam@127 142 ST(&(x[WS(rs, 2)]), VFNMSI(TE, Tz), ms, &(x[0]));
cannam@127 143 }
cannam@127 144 }
cannam@127 145 }
cannam@127 146 }
cannam@127 147 }
cannam@127 148 }
cannam@127 149 }
cannam@127 150 VLEAVE();
cannam@127 151 }
cannam@127 152
cannam@127 153 static const tw_instr twinstr[] = {
cannam@127 154 VTW(0, 1),
cannam@127 155 VTW(0, 2),
cannam@127 156 VTW(0, 3),
cannam@127 157 VTW(0, 4),
cannam@127 158 VTW(0, 5),
cannam@127 159 VTW(0, 6),
cannam@127 160 VTW(0, 7),
cannam@127 161 VTW(0, 8),
cannam@127 162 {TW_NEXT, VL, 0}
cannam@127 163 };
cannam@127 164
cannam@127 165 static const ct_desc desc = { 9, XSIMD_STRING("t1fuv_9"), twinstr, &GENUS, {20, 20, 34, 0}, 0, 0, 0 };
cannam@127 166
cannam@127 167 void XSIMD(codelet_t1fuv_9) (planner *p) {
cannam@127 168 X(kdft_dit_register) (p, t1fuv_9, &desc);
cannam@127 169 }
cannam@127 170 #else /* HAVE_FMA */
cannam@127 171
cannam@127 172 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 9 -name t1fuv_9 -include t1fu.h */
cannam@127 173
cannam@127 174 /*
cannam@127 175 * This function contains 54 FP additions, 42 FP multiplications,
cannam@127 176 * (or, 38 additions, 26 multiplications, 16 fused multiply/add),
cannam@127 177 * 38 stack variables, 14 constants, and 18 memory accesses
cannam@127 178 */
cannam@127 179 #include "t1fu.h"
cannam@127 180
cannam@127 181 static void t1fuv_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 182 {
cannam@127 183 DVK(KP939692620, +0.939692620785908384054109277324731469936208134);
cannam@127 184 DVK(KP296198132, +0.296198132726023843175338011893050938967728390);
cannam@127 185 DVK(KP852868531, +0.852868531952443209628250963940074071936020296);
cannam@127 186 DVK(KP173648177, +0.173648177666930348851716626769314796000375677);
cannam@127 187 DVK(KP556670399, +0.556670399226419366452912952047023132968291906);
cannam@127 188 DVK(KP766044443, +0.766044443118978035202392650555416673935832457);
cannam@127 189 DVK(KP642787609, +0.642787609686539326322643409907263432907559884);
cannam@127 190 DVK(KP663413948, +0.663413948168938396205421319635891297216863310);
cannam@127 191 DVK(KP984807753, +0.984807753012208059366743024589523013670643252);
cannam@127 192 DVK(KP150383733, +0.150383733180435296639271897612501926072238258);
cannam@127 193 DVK(KP342020143, +0.342020143325668733044099614682259580763083368);
cannam@127 194 DVK(KP813797681, +0.813797681349373692844693217248393223289101568);
cannam@127 195 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
cannam@127 196 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
cannam@127 197 {
cannam@127 198 INT m;
cannam@127 199 R *x;
cannam@127 200 x = ri;
cannam@127 201 for (m = mb, W = W + (mb * ((TWVL / VL) * 16)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 16), MAKE_VOLATILE_STRIDE(9, rs)) {
cannam@127 202 V T1, T6, TA, Tt, Tf, Ts, Tw, Tn, Tv;
cannam@127 203 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@127 204 {
cannam@127 205 V T3, T5, T2, T4;
cannam@127 206 T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@127 207 T3 = BYTWJ(&(W[TWVL * 4]), T2);
cannam@127 208 T4 = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@127 209 T5 = BYTWJ(&(W[TWVL * 10]), T4);
cannam@127 210 T6 = VADD(T3, T5);
cannam@127 211 TA = VMUL(LDK(KP866025403), VSUB(T5, T3));
cannam@127 212 }
cannam@127 213 {
cannam@127 214 V T9, Td, Tb, T8, Tc, Ta, Te;
cannam@127 215 T8 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@127 216 T9 = BYTWJ(&(W[0]), T8);
cannam@127 217 Tc = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@127 218 Td = BYTWJ(&(W[TWVL * 12]), Tc);
cannam@127 219 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@127 220 Tb = BYTWJ(&(W[TWVL * 6]), Ta);
cannam@127 221 Tt = VSUB(Td, Tb);
cannam@127 222 Te = VADD(Tb, Td);
cannam@127 223 Tf = VADD(T9, Te);
cannam@127 224 Ts = VFNMS(LDK(KP500000000), Te, T9);
cannam@127 225 }
cannam@127 226 {
cannam@127 227 V Th, Tl, Tj, Tg, Tk, Ti, Tm;
cannam@127 228 Tg = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@127 229 Th = BYTWJ(&(W[TWVL * 2]), Tg);
cannam@127 230 Tk = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
cannam@127 231 Tl = BYTWJ(&(W[TWVL * 14]), Tk);
cannam@127 232 Ti = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@127 233 Tj = BYTWJ(&(W[TWVL * 8]), Ti);
cannam@127 234 Tw = VSUB(Tl, Tj);
cannam@127 235 Tm = VADD(Tj, Tl);
cannam@127 236 Tn = VADD(Th, Tm);
cannam@127 237 Tv = VFNMS(LDK(KP500000000), Tm, Th);
cannam@127 238 }
cannam@127 239 {
cannam@127 240 V Tq, T7, To, Tp;
cannam@127 241 Tq = VBYI(VMUL(LDK(KP866025403), VSUB(Tn, Tf)));
cannam@127 242 T7 = VADD(T1, T6);
cannam@127 243 To = VADD(Tf, Tn);
cannam@127 244 Tp = VFNMS(LDK(KP500000000), To, T7);
cannam@127 245 ST(&(x[0]), VADD(T7, To), ms, &(x[0]));
cannam@127 246 ST(&(x[WS(rs, 3)]), VADD(Tp, Tq), ms, &(x[WS(rs, 1)]));
cannam@127 247 ST(&(x[WS(rs, 6)]), VSUB(Tp, Tq), ms, &(x[0]));
cannam@127 248 }
cannam@127 249 {
cannam@127 250 V TI, TB, TC, TD, Tu, Tx, Ty, Tr, TH;
cannam@127 251 TI = VBYI(VSUB(VFNMS(LDK(KP342020143), Tv, VFNMS(LDK(KP150383733), Tt, VFNMS(LDK(KP984807753), Ts, VMUL(LDK(KP813797681), Tw)))), TA));
cannam@127 252 TB = VFNMS(LDK(KP642787609), Ts, VMUL(LDK(KP663413948), Tt));
cannam@127 253 TC = VFNMS(LDK(KP984807753), Tv, VMUL(LDK(KP150383733), Tw));
cannam@127 254 TD = VADD(TB, TC);
cannam@127 255 Tu = VFMA(LDK(KP766044443), Ts, VMUL(LDK(KP556670399), Tt));
cannam@127 256 Tx = VFMA(LDK(KP173648177), Tv, VMUL(LDK(KP852868531), Tw));
cannam@127 257 Ty = VADD(Tu, Tx);
cannam@127 258 Tr = VFNMS(LDK(KP500000000), T6, T1);
cannam@127 259 TH = VFMA(LDK(KP173648177), Ts, VFNMS(LDK(KP296198132), Tw, VFNMS(LDK(KP939692620), Tv, VFNMS(LDK(KP852868531), Tt, Tr))));
cannam@127 260 ST(&(x[WS(rs, 7)]), VSUB(TH, TI), ms, &(x[WS(rs, 1)]));
cannam@127 261 ST(&(x[WS(rs, 2)]), VADD(TH, TI), ms, &(x[0]));
cannam@127 262 {
cannam@127 263 V Tz, TE, TF, TG;
cannam@127 264 Tz = VADD(Tr, Ty);
cannam@127 265 TE = VBYI(VADD(TA, TD));
cannam@127 266 ST(&(x[WS(rs, 8)]), VSUB(Tz, TE), ms, &(x[0]));
cannam@127 267 ST(&(x[WS(rs, 1)]), VADD(TE, Tz), ms, &(x[WS(rs, 1)]));
cannam@127 268 TF = VFMA(LDK(KP866025403), VSUB(TB, TC), VFNMS(LDK(KP500000000), Ty, Tr));
cannam@127 269 TG = VBYI(VADD(TA, VFNMS(LDK(KP500000000), TD, VMUL(LDK(KP866025403), VSUB(Tx, Tu)))));
cannam@127 270 ST(&(x[WS(rs, 5)]), VSUB(TF, TG), ms, &(x[WS(rs, 1)]));
cannam@127 271 ST(&(x[WS(rs, 4)]), VADD(TF, TG), ms, &(x[0]));
cannam@127 272 }
cannam@127 273 }
cannam@127 274 }
cannam@127 275 }
cannam@127 276 VLEAVE();
cannam@127 277 }
cannam@127 278
cannam@127 279 static const tw_instr twinstr[] = {
cannam@127 280 VTW(0, 1),
cannam@127 281 VTW(0, 2),
cannam@127 282 VTW(0, 3),
cannam@127 283 VTW(0, 4),
cannam@127 284 VTW(0, 5),
cannam@127 285 VTW(0, 6),
cannam@127 286 VTW(0, 7),
cannam@127 287 VTW(0, 8),
cannam@127 288 {TW_NEXT, VL, 0}
cannam@127 289 };
cannam@127 290
cannam@127 291 static const ct_desc desc = { 9, XSIMD_STRING("t1fuv_9"), twinstr, &GENUS, {38, 26, 16, 0}, 0, 0, 0 };
cannam@127 292
cannam@127 293 void XSIMD(codelet_t1fuv_9) (planner *p) {
cannam@127 294 X(kdft_dit_register) (p, t1fuv_9, &desc);
cannam@127 295 }
cannam@127 296 #endif /* HAVE_FMA */