annotate src/fftw-3.3.5/dft/simd/common/t1fuv_8.c @ 127:7867fa7e1b6b

Current fftw source
author Chris Cannam <cannam@all-day-breakfast.com>
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
rev   line source
cannam@127 1 /*
cannam@127 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
cannam@127 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
cannam@127 4 *
cannam@127 5 * This program is free software; you can redistribute it and/or modify
cannam@127 6 * it under the terms of the GNU General Public License as published by
cannam@127 7 * the Free Software Foundation; either version 2 of the License, or
cannam@127 8 * (at your option) any later version.
cannam@127 9 *
cannam@127 10 * This program is distributed in the hope that it will be useful,
cannam@127 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
cannam@127 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
cannam@127 13 * GNU General Public License for more details.
cannam@127 14 *
cannam@127 15 * You should have received a copy of the GNU General Public License
cannam@127 16 * along with this program; if not, write to the Free Software
cannam@127 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
cannam@127 18 *
cannam@127 19 */
cannam@127 20
cannam@127 21 /* This file was automatically generated --- DO NOT EDIT */
cannam@127 22 /* Generated on Sat Jul 30 16:41:50 EDT 2016 */
cannam@127 23
cannam@127 24 #include "codelet-dft.h"
cannam@127 25
cannam@127 26 #ifdef HAVE_FMA
cannam@127 27
cannam@127 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1fuv_8 -include t1fu.h */
cannam@127 29
cannam@127 30 /*
cannam@127 31 * This function contains 33 FP additions, 24 FP multiplications,
cannam@127 32 * (or, 23 additions, 14 multiplications, 10 fused multiply/add),
cannam@127 33 * 36 stack variables, 1 constants, and 16 memory accesses
cannam@127 34 */
cannam@127 35 #include "t1fu.h"
cannam@127 36
cannam@127 37 static void t1fuv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 38 {
cannam@127 39 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@127 40 {
cannam@127 41 INT m;
cannam@127 42 R *x;
cannam@127 43 x = ri;
cannam@127 44 for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) {
cannam@127 45 V T1, T2, Th, Tj, T5, T7, Ta, Tc;
cannam@127 46 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@127 47 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@127 48 Th = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@127 49 Tj = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@127 50 T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@127 51 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@127 52 Ta = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@127 53 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@127 54 {
cannam@127 55 V T3, Ti, Tk, T6, T8, Tb, Td;
cannam@127 56 T3 = BYTWJ(&(W[TWVL * 6]), T2);
cannam@127 57 Ti = BYTWJ(&(W[TWVL * 2]), Th);
cannam@127 58 Tk = BYTWJ(&(W[TWVL * 10]), Tj);
cannam@127 59 T6 = BYTWJ(&(W[0]), T5);
cannam@127 60 T8 = BYTWJ(&(W[TWVL * 8]), T7);
cannam@127 61 Tb = BYTWJ(&(W[TWVL * 12]), Ta);
cannam@127 62 Td = BYTWJ(&(W[TWVL * 4]), Tc);
cannam@127 63 {
cannam@127 64 V Tq, T4, Tr, Tl, Tt, T9, Tu, Te, Tw, Ts;
cannam@127 65 Tq = VADD(T1, T3);
cannam@127 66 T4 = VSUB(T1, T3);
cannam@127 67 Tr = VADD(Ti, Tk);
cannam@127 68 Tl = VSUB(Ti, Tk);
cannam@127 69 Tt = VADD(T6, T8);
cannam@127 70 T9 = VSUB(T6, T8);
cannam@127 71 Tu = VADD(Tb, Td);
cannam@127 72 Te = VSUB(Tb, Td);
cannam@127 73 Tw = VSUB(Tq, Tr);
cannam@127 74 Ts = VADD(Tq, Tr);
cannam@127 75 {
cannam@127 76 V Tx, Tv, Tm, Tf;
cannam@127 77 Tx = VSUB(Tu, Tt);
cannam@127 78 Tv = VADD(Tt, Tu);
cannam@127 79 Tm = VSUB(Te, T9);
cannam@127 80 Tf = VADD(T9, Te);
cannam@127 81 {
cannam@127 82 V Tp, Tn, To, Tg;
cannam@127 83 ST(&(x[WS(rs, 2)]), VFMAI(Tx, Tw), ms, &(x[0]));
cannam@127 84 ST(&(x[WS(rs, 6)]), VFNMSI(Tx, Tw), ms, &(x[0]));
cannam@127 85 ST(&(x[0]), VADD(Ts, Tv), ms, &(x[0]));
cannam@127 86 ST(&(x[WS(rs, 4)]), VSUB(Ts, Tv), ms, &(x[0]));
cannam@127 87 Tp = VFMA(LDK(KP707106781), Tm, Tl);
cannam@127 88 Tn = VFNMS(LDK(KP707106781), Tm, Tl);
cannam@127 89 To = VFNMS(LDK(KP707106781), Tf, T4);
cannam@127 90 Tg = VFMA(LDK(KP707106781), Tf, T4);
cannam@127 91 ST(&(x[WS(rs, 5)]), VFNMSI(Tp, To), ms, &(x[WS(rs, 1)]));
cannam@127 92 ST(&(x[WS(rs, 3)]), VFMAI(Tp, To), ms, &(x[WS(rs, 1)]));
cannam@127 93 ST(&(x[WS(rs, 7)]), VFMAI(Tn, Tg), ms, &(x[WS(rs, 1)]));
cannam@127 94 ST(&(x[WS(rs, 1)]), VFNMSI(Tn, Tg), ms, &(x[WS(rs, 1)]));
cannam@127 95 }
cannam@127 96 }
cannam@127 97 }
cannam@127 98 }
cannam@127 99 }
cannam@127 100 }
cannam@127 101 VLEAVE();
cannam@127 102 }
cannam@127 103
cannam@127 104 static const tw_instr twinstr[] = {
cannam@127 105 VTW(0, 1),
cannam@127 106 VTW(0, 2),
cannam@127 107 VTW(0, 3),
cannam@127 108 VTW(0, 4),
cannam@127 109 VTW(0, 5),
cannam@127 110 VTW(0, 6),
cannam@127 111 VTW(0, 7),
cannam@127 112 {TW_NEXT, VL, 0}
cannam@127 113 };
cannam@127 114
cannam@127 115 static const ct_desc desc = { 8, XSIMD_STRING("t1fuv_8"), twinstr, &GENUS, {23, 14, 10, 0}, 0, 0, 0 };
cannam@127 116
cannam@127 117 void XSIMD(codelet_t1fuv_8) (planner *p) {
cannam@127 118 X(kdft_dit_register) (p, t1fuv_8, &desc);
cannam@127 119 }
cannam@127 120 #else /* HAVE_FMA */
cannam@127 121
cannam@127 122 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1fuv_8 -include t1fu.h */
cannam@127 123
cannam@127 124 /*
cannam@127 125 * This function contains 33 FP additions, 16 FP multiplications,
cannam@127 126 * (or, 33 additions, 16 multiplications, 0 fused multiply/add),
cannam@127 127 * 24 stack variables, 1 constants, and 16 memory accesses
cannam@127 128 */
cannam@127 129 #include "t1fu.h"
cannam@127 130
cannam@127 131 static void t1fuv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
cannam@127 132 {
cannam@127 133 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
cannam@127 134 {
cannam@127 135 INT m;
cannam@127 136 R *x;
cannam@127 137 x = ri;
cannam@127 138 for (m = mb, W = W + (mb * ((TWVL / VL) * 14)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 14), MAKE_VOLATILE_STRIDE(8, rs)) {
cannam@127 139 V T4, Tq, Tm, Tr, T9, Tt, Te, Tu, T1, T3, T2;
cannam@127 140 T1 = LD(&(x[0]), ms, &(x[0]));
cannam@127 141 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
cannam@127 142 T3 = BYTWJ(&(W[TWVL * 6]), T2);
cannam@127 143 T4 = VSUB(T1, T3);
cannam@127 144 Tq = VADD(T1, T3);
cannam@127 145 {
cannam@127 146 V Tj, Tl, Ti, Tk;
cannam@127 147 Ti = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
cannam@127 148 Tj = BYTWJ(&(W[TWVL * 2]), Ti);
cannam@127 149 Tk = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
cannam@127 150 Tl = BYTWJ(&(W[TWVL * 10]), Tk);
cannam@127 151 Tm = VSUB(Tj, Tl);
cannam@127 152 Tr = VADD(Tj, Tl);
cannam@127 153 }
cannam@127 154 {
cannam@127 155 V T6, T8, T5, T7;
cannam@127 156 T5 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
cannam@127 157 T6 = BYTWJ(&(W[0]), T5);
cannam@127 158 T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
cannam@127 159 T8 = BYTWJ(&(W[TWVL * 8]), T7);
cannam@127 160 T9 = VSUB(T6, T8);
cannam@127 161 Tt = VADD(T6, T8);
cannam@127 162 }
cannam@127 163 {
cannam@127 164 V Tb, Td, Ta, Tc;
cannam@127 165 Ta = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
cannam@127 166 Tb = BYTWJ(&(W[TWVL * 12]), Ta);
cannam@127 167 Tc = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
cannam@127 168 Td = BYTWJ(&(W[TWVL * 4]), Tc);
cannam@127 169 Te = VSUB(Tb, Td);
cannam@127 170 Tu = VADD(Tb, Td);
cannam@127 171 }
cannam@127 172 {
cannam@127 173 V Ts, Tv, Tw, Tx;
cannam@127 174 Ts = VADD(Tq, Tr);
cannam@127 175 Tv = VADD(Tt, Tu);
cannam@127 176 ST(&(x[WS(rs, 4)]), VSUB(Ts, Tv), ms, &(x[0]));
cannam@127 177 ST(&(x[0]), VADD(Ts, Tv), ms, &(x[0]));
cannam@127 178 Tw = VSUB(Tq, Tr);
cannam@127 179 Tx = VBYI(VSUB(Tu, Tt));
cannam@127 180 ST(&(x[WS(rs, 6)]), VSUB(Tw, Tx), ms, &(x[0]));
cannam@127 181 ST(&(x[WS(rs, 2)]), VADD(Tw, Tx), ms, &(x[0]));
cannam@127 182 {
cannam@127 183 V Tg, To, Tn, Tp, Tf, Th;
cannam@127 184 Tf = VMUL(LDK(KP707106781), VADD(T9, Te));
cannam@127 185 Tg = VADD(T4, Tf);
cannam@127 186 To = VSUB(T4, Tf);
cannam@127 187 Th = VMUL(LDK(KP707106781), VSUB(Te, T9));
cannam@127 188 Tn = VBYI(VSUB(Th, Tm));
cannam@127 189 Tp = VBYI(VADD(Tm, Th));
cannam@127 190 ST(&(x[WS(rs, 7)]), VSUB(Tg, Tn), ms, &(x[WS(rs, 1)]));
cannam@127 191 ST(&(x[WS(rs, 3)]), VADD(To, Tp), ms, &(x[WS(rs, 1)]));
cannam@127 192 ST(&(x[WS(rs, 1)]), VADD(Tg, Tn), ms, &(x[WS(rs, 1)]));
cannam@127 193 ST(&(x[WS(rs, 5)]), VSUB(To, Tp), ms, &(x[WS(rs, 1)]));
cannam@127 194 }
cannam@127 195 }
cannam@127 196 }
cannam@127 197 }
cannam@127 198 VLEAVE();
cannam@127 199 }
cannam@127 200
cannam@127 201 static const tw_instr twinstr[] = {
cannam@127 202 VTW(0, 1),
cannam@127 203 VTW(0, 2),
cannam@127 204 VTW(0, 3),
cannam@127 205 VTW(0, 4),
cannam@127 206 VTW(0, 5),
cannam@127 207 VTW(0, 6),
cannam@127 208 VTW(0, 7),
cannam@127 209 {TW_NEXT, VL, 0}
cannam@127 210 };
cannam@127 211
cannam@127 212 static const ct_desc desc = { 8, XSIMD_STRING("t1fuv_8"), twinstr, &GENUS, {33, 16, 0, 0}, 0, 0, 0 };
cannam@127 213
cannam@127 214 void XSIMD(codelet_t1fuv_8) (planner *p) {
cannam@127 215 X(kdft_dit_register) (p, t1fuv_8, &desc);
cannam@127 216 }
cannam@127 217 #endif /* HAVE_FMA */