cannam@154
|
1 /* Copyright (c) 2007-2008 CSIRO
|
cannam@154
|
2 Copyright (c) 2007-2009 Xiph.Org Foundation
|
cannam@154
|
3 Copyright (c) 2008-2009 Gregory Maxwell
|
cannam@154
|
4 Written by Jean-Marc Valin and Gregory Maxwell */
|
cannam@154
|
5 /*
|
cannam@154
|
6 Redistribution and use in source and binary forms, with or without
|
cannam@154
|
7 modification, are permitted provided that the following conditions
|
cannam@154
|
8 are met:
|
cannam@154
|
9
|
cannam@154
|
10 - Redistributions of source code must retain the above copyright
|
cannam@154
|
11 notice, this list of conditions and the following disclaimer.
|
cannam@154
|
12
|
cannam@154
|
13 - Redistributions in binary form must reproduce the above copyright
|
cannam@154
|
14 notice, this list of conditions and the following disclaimer in the
|
cannam@154
|
15 documentation and/or other materials provided with the distribution.
|
cannam@154
|
16
|
cannam@154
|
17 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
cannam@154
|
18 ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
cannam@154
|
19 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
cannam@154
|
20 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
cannam@154
|
21 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
cannam@154
|
22 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
cannam@154
|
23 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
cannam@154
|
24 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
cannam@154
|
25 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
cannam@154
|
26 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
cannam@154
|
27 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
cannam@154
|
28 */
|
cannam@154
|
29
|
cannam@154
|
30 #ifdef HAVE_CONFIG_H
|
cannam@154
|
31 #include "config.h"
|
cannam@154
|
32 #endif
|
cannam@154
|
33
|
cannam@154
|
34 #include <math.h>
|
cannam@154
|
35 #include "bands.h"
|
cannam@154
|
36 #include "modes.h"
|
cannam@154
|
37 #include "vq.h"
|
cannam@154
|
38 #include "cwrs.h"
|
cannam@154
|
39 #include "stack_alloc.h"
|
cannam@154
|
40 #include "os_support.h"
|
cannam@154
|
41 #include "mathops.h"
|
cannam@154
|
42 #include "rate.h"
|
cannam@154
|
43 #include "quant_bands.h"
|
cannam@154
|
44 #include "pitch.h"
|
cannam@154
|
45
|
cannam@154
|
46 int hysteresis_decision(opus_val16 val, const opus_val16 *thresholds, const opus_val16 *hysteresis, int N, int prev)
|
cannam@154
|
47 {
|
cannam@154
|
48 int i;
|
cannam@154
|
49 for (i=0;i<N;i++)
|
cannam@154
|
50 {
|
cannam@154
|
51 if (val < thresholds[i])
|
cannam@154
|
52 break;
|
cannam@154
|
53 }
|
cannam@154
|
54 if (i>prev && val < thresholds[prev]+hysteresis[prev])
|
cannam@154
|
55 i=prev;
|
cannam@154
|
56 if (i<prev && val > thresholds[prev-1]-hysteresis[prev-1])
|
cannam@154
|
57 i=prev;
|
cannam@154
|
58 return i;
|
cannam@154
|
59 }
|
cannam@154
|
60
|
cannam@154
|
61 opus_uint32 celt_lcg_rand(opus_uint32 seed)
|
cannam@154
|
62 {
|
cannam@154
|
63 return 1664525 * seed + 1013904223;
|
cannam@154
|
64 }
|
cannam@154
|
65
|
cannam@154
|
66 /* This is a cos() approximation designed to be bit-exact on any platform. Bit exactness
|
cannam@154
|
67 with this approximation is important because it has an impact on the bit allocation */
|
cannam@154
|
68 opus_int16 bitexact_cos(opus_int16 x)
|
cannam@154
|
69 {
|
cannam@154
|
70 opus_int32 tmp;
|
cannam@154
|
71 opus_int16 x2;
|
cannam@154
|
72 tmp = (4096+((opus_int32)(x)*(x)))>>13;
|
cannam@154
|
73 celt_sig_assert(tmp<=32767);
|
cannam@154
|
74 x2 = tmp;
|
cannam@154
|
75 x2 = (32767-x2) + FRAC_MUL16(x2, (-7651 + FRAC_MUL16(x2, (8277 + FRAC_MUL16(-626, x2)))));
|
cannam@154
|
76 celt_sig_assert(x2<=32766);
|
cannam@154
|
77 return 1+x2;
|
cannam@154
|
78 }
|
cannam@154
|
79
|
cannam@154
|
80 int bitexact_log2tan(int isin,int icos)
|
cannam@154
|
81 {
|
cannam@154
|
82 int lc;
|
cannam@154
|
83 int ls;
|
cannam@154
|
84 lc=EC_ILOG(icos);
|
cannam@154
|
85 ls=EC_ILOG(isin);
|
cannam@154
|
86 icos<<=15-lc;
|
cannam@154
|
87 isin<<=15-ls;
|
cannam@154
|
88 return (ls-lc)*(1<<11)
|
cannam@154
|
89 +FRAC_MUL16(isin, FRAC_MUL16(isin, -2597) + 7932)
|
cannam@154
|
90 -FRAC_MUL16(icos, FRAC_MUL16(icos, -2597) + 7932);
|
cannam@154
|
91 }
|
cannam@154
|
92
|
cannam@154
|
93 #ifdef FIXED_POINT
|
cannam@154
|
94 /* Compute the amplitude (sqrt energy) in each of the bands */
|
cannam@154
|
95 void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM, int arch)
|
cannam@154
|
96 {
|
cannam@154
|
97 int i, c, N;
|
cannam@154
|
98 const opus_int16 *eBands = m->eBands;
|
cannam@154
|
99 (void)arch;
|
cannam@154
|
100 N = m->shortMdctSize<<LM;
|
cannam@154
|
101 c=0; do {
|
cannam@154
|
102 for (i=0;i<end;i++)
|
cannam@154
|
103 {
|
cannam@154
|
104 int j;
|
cannam@154
|
105 opus_val32 maxval=0;
|
cannam@154
|
106 opus_val32 sum = 0;
|
cannam@154
|
107
|
cannam@154
|
108 maxval = celt_maxabs32(&X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM);
|
cannam@154
|
109 if (maxval > 0)
|
cannam@154
|
110 {
|
cannam@154
|
111 int shift = celt_ilog2(maxval) - 14 + (((m->logN[i]>>BITRES)+LM+1)>>1);
|
cannam@154
|
112 j=eBands[i]<<LM;
|
cannam@154
|
113 if (shift>0)
|
cannam@154
|
114 {
|
cannam@154
|
115 do {
|
cannam@154
|
116 sum = MAC16_16(sum, EXTRACT16(SHR32(X[j+c*N],shift)),
|
cannam@154
|
117 EXTRACT16(SHR32(X[j+c*N],shift)));
|
cannam@154
|
118 } while (++j<eBands[i+1]<<LM);
|
cannam@154
|
119 } else {
|
cannam@154
|
120 do {
|
cannam@154
|
121 sum = MAC16_16(sum, EXTRACT16(SHL32(X[j+c*N],-shift)),
|
cannam@154
|
122 EXTRACT16(SHL32(X[j+c*N],-shift)));
|
cannam@154
|
123 } while (++j<eBands[i+1]<<LM);
|
cannam@154
|
124 }
|
cannam@154
|
125 /* We're adding one here to ensure the normalized band isn't larger than unity norm */
|
cannam@154
|
126 bandE[i+c*m->nbEBands] = EPSILON+VSHR32(EXTEND32(celt_sqrt(sum)),-shift);
|
cannam@154
|
127 } else {
|
cannam@154
|
128 bandE[i+c*m->nbEBands] = EPSILON;
|
cannam@154
|
129 }
|
cannam@154
|
130 /*printf ("%f ", bandE[i+c*m->nbEBands]);*/
|
cannam@154
|
131 }
|
cannam@154
|
132 } while (++c<C);
|
cannam@154
|
133 /*printf ("\n");*/
|
cannam@154
|
134 }
|
cannam@154
|
135
|
cannam@154
|
136 /* Normalise each band such that the energy is one. */
|
cannam@154
|
137 void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M)
|
cannam@154
|
138 {
|
cannam@154
|
139 int i, c, N;
|
cannam@154
|
140 const opus_int16 *eBands = m->eBands;
|
cannam@154
|
141 N = M*m->shortMdctSize;
|
cannam@154
|
142 c=0; do {
|
cannam@154
|
143 i=0; do {
|
cannam@154
|
144 opus_val16 g;
|
cannam@154
|
145 int j,shift;
|
cannam@154
|
146 opus_val16 E;
|
cannam@154
|
147 shift = celt_zlog2(bandE[i+c*m->nbEBands])-13;
|
cannam@154
|
148 E = VSHR32(bandE[i+c*m->nbEBands], shift);
|
cannam@154
|
149 g = EXTRACT16(celt_rcp(SHL32(E,3)));
|
cannam@154
|
150 j=M*eBands[i]; do {
|
cannam@154
|
151 X[j+c*N] = MULT16_16_Q15(VSHR32(freq[j+c*N],shift-1),g);
|
cannam@154
|
152 } while (++j<M*eBands[i+1]);
|
cannam@154
|
153 } while (++i<end);
|
cannam@154
|
154 } while (++c<C);
|
cannam@154
|
155 }
|
cannam@154
|
156
|
cannam@154
|
157 #else /* FIXED_POINT */
|
cannam@154
|
158 /* Compute the amplitude (sqrt energy) in each of the bands */
|
cannam@154
|
159 void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bandE, int end, int C, int LM, int arch)
|
cannam@154
|
160 {
|
cannam@154
|
161 int i, c, N;
|
cannam@154
|
162 const opus_int16 *eBands = m->eBands;
|
cannam@154
|
163 N = m->shortMdctSize<<LM;
|
cannam@154
|
164 c=0; do {
|
cannam@154
|
165 for (i=0;i<end;i++)
|
cannam@154
|
166 {
|
cannam@154
|
167 opus_val32 sum;
|
cannam@154
|
168 sum = 1e-27f + celt_inner_prod(&X[c*N+(eBands[i]<<LM)], &X[c*N+(eBands[i]<<LM)], (eBands[i+1]-eBands[i])<<LM, arch);
|
cannam@154
|
169 bandE[i+c*m->nbEBands] = celt_sqrt(sum);
|
cannam@154
|
170 /*printf ("%f ", bandE[i+c*m->nbEBands]);*/
|
cannam@154
|
171 }
|
cannam@154
|
172 } while (++c<C);
|
cannam@154
|
173 /*printf ("\n");*/
|
cannam@154
|
174 }
|
cannam@154
|
175
|
cannam@154
|
176 /* Normalise each band such that the energy is one. */
|
cannam@154
|
177 void normalise_bands(const CELTMode *m, const celt_sig * OPUS_RESTRICT freq, celt_norm * OPUS_RESTRICT X, const celt_ener *bandE, int end, int C, int M)
|
cannam@154
|
178 {
|
cannam@154
|
179 int i, c, N;
|
cannam@154
|
180 const opus_int16 *eBands = m->eBands;
|
cannam@154
|
181 N = M*m->shortMdctSize;
|
cannam@154
|
182 c=0; do {
|
cannam@154
|
183 for (i=0;i<end;i++)
|
cannam@154
|
184 {
|
cannam@154
|
185 int j;
|
cannam@154
|
186 opus_val16 g = 1.f/(1e-27f+bandE[i+c*m->nbEBands]);
|
cannam@154
|
187 for (j=M*eBands[i];j<M*eBands[i+1];j++)
|
cannam@154
|
188 X[j+c*N] = freq[j+c*N]*g;
|
cannam@154
|
189 }
|
cannam@154
|
190 } while (++c<C);
|
cannam@154
|
191 }
|
cannam@154
|
192
|
cannam@154
|
193 #endif /* FIXED_POINT */
|
cannam@154
|
194
|
cannam@154
|
195 /* De-normalise the energy to produce the synthesis from the unit-energy bands */
|
cannam@154
|
196 void denormalise_bands(const CELTMode *m, const celt_norm * OPUS_RESTRICT X,
|
cannam@154
|
197 celt_sig * OPUS_RESTRICT freq, const opus_val16 *bandLogE, int start,
|
cannam@154
|
198 int end, int M, int downsample, int silence)
|
cannam@154
|
199 {
|
cannam@154
|
200 int i, N;
|
cannam@154
|
201 int bound;
|
cannam@154
|
202 celt_sig * OPUS_RESTRICT f;
|
cannam@154
|
203 const celt_norm * OPUS_RESTRICT x;
|
cannam@154
|
204 const opus_int16 *eBands = m->eBands;
|
cannam@154
|
205 N = M*m->shortMdctSize;
|
cannam@154
|
206 bound = M*eBands[end];
|
cannam@154
|
207 if (downsample!=1)
|
cannam@154
|
208 bound = IMIN(bound, N/downsample);
|
cannam@154
|
209 if (silence)
|
cannam@154
|
210 {
|
cannam@154
|
211 bound = 0;
|
cannam@154
|
212 start = end = 0;
|
cannam@154
|
213 }
|
cannam@154
|
214 f = freq;
|
cannam@154
|
215 x = X+M*eBands[start];
|
cannam@154
|
216 for (i=0;i<M*eBands[start];i++)
|
cannam@154
|
217 *f++ = 0;
|
cannam@154
|
218 for (i=start;i<end;i++)
|
cannam@154
|
219 {
|
cannam@154
|
220 int j, band_end;
|
cannam@154
|
221 opus_val16 g;
|
cannam@154
|
222 opus_val16 lg;
|
cannam@154
|
223 #ifdef FIXED_POINT
|
cannam@154
|
224 int shift;
|
cannam@154
|
225 #endif
|
cannam@154
|
226 j=M*eBands[i];
|
cannam@154
|
227 band_end = M*eBands[i+1];
|
cannam@154
|
228 lg = SATURATE16(ADD32(bandLogE[i], SHL32((opus_val32)eMeans[i],6)));
|
cannam@154
|
229 #ifndef FIXED_POINT
|
cannam@154
|
230 g = celt_exp2(MIN32(32.f, lg));
|
cannam@154
|
231 #else
|
cannam@154
|
232 /* Handle the integer part of the log energy */
|
cannam@154
|
233 shift = 16-(lg>>DB_SHIFT);
|
cannam@154
|
234 if (shift>31)
|
cannam@154
|
235 {
|
cannam@154
|
236 shift=0;
|
cannam@154
|
237 g=0;
|
cannam@154
|
238 } else {
|
cannam@154
|
239 /* Handle the fractional part. */
|
cannam@154
|
240 g = celt_exp2_frac(lg&((1<<DB_SHIFT)-1));
|
cannam@154
|
241 }
|
cannam@154
|
242 /* Handle extreme gains with negative shift. */
|
cannam@154
|
243 if (shift<0)
|
cannam@154
|
244 {
|
cannam@154
|
245 /* For shift <= -2 and g > 16384 we'd be likely to overflow, so we're
|
cannam@154
|
246 capping the gain here, which is equivalent to a cap of 18 on lg.
|
cannam@154
|
247 This shouldn't trigger unless the bitstream is already corrupted. */
|
cannam@154
|
248 if (shift <= -2)
|
cannam@154
|
249 {
|
cannam@154
|
250 g = 16384;
|
cannam@154
|
251 shift = -2;
|
cannam@154
|
252 }
|
cannam@154
|
253 do {
|
cannam@154
|
254 *f++ = SHL32(MULT16_16(*x++, g), -shift);
|
cannam@154
|
255 } while (++j<band_end);
|
cannam@154
|
256 } else
|
cannam@154
|
257 #endif
|
cannam@154
|
258 /* Be careful of the fixed-point "else" just above when changing this code */
|
cannam@154
|
259 do {
|
cannam@154
|
260 *f++ = SHR32(MULT16_16(*x++, g), shift);
|
cannam@154
|
261 } while (++j<band_end);
|
cannam@154
|
262 }
|
cannam@154
|
263 celt_assert(start <= end);
|
cannam@154
|
264 OPUS_CLEAR(&freq[bound], N-bound);
|
cannam@154
|
265 }
|
cannam@154
|
266
|
cannam@154
|
267 /* This prevents energy collapse for transients with multiple short MDCTs */
|
cannam@154
|
268 void anti_collapse(const CELTMode *m, celt_norm *X_, unsigned char *collapse_masks, int LM, int C, int size,
|
cannam@154
|
269 int start, int end, const opus_val16 *logE, const opus_val16 *prev1logE,
|
cannam@154
|
270 const opus_val16 *prev2logE, const int *pulses, opus_uint32 seed, int arch)
|
cannam@154
|
271 {
|
cannam@154
|
272 int c, i, j, k;
|
cannam@154
|
273 for (i=start;i<end;i++)
|
cannam@154
|
274 {
|
cannam@154
|
275 int N0;
|
cannam@154
|
276 opus_val16 thresh, sqrt_1;
|
cannam@154
|
277 int depth;
|
cannam@154
|
278 #ifdef FIXED_POINT
|
cannam@154
|
279 int shift;
|
cannam@154
|
280 opus_val32 thresh32;
|
cannam@154
|
281 #endif
|
cannam@154
|
282
|
cannam@154
|
283 N0 = m->eBands[i+1]-m->eBands[i];
|
cannam@154
|
284 /* depth in 1/8 bits */
|
cannam@154
|
285 celt_sig_assert(pulses[i]>=0);
|
cannam@154
|
286 depth = celt_udiv(1+pulses[i], (m->eBands[i+1]-m->eBands[i]))>>LM;
|
cannam@154
|
287
|
cannam@154
|
288 #ifdef FIXED_POINT
|
cannam@154
|
289 thresh32 = SHR32(celt_exp2(-SHL16(depth, 10-BITRES)),1);
|
cannam@154
|
290 thresh = MULT16_32_Q15(QCONST16(0.5f, 15), MIN32(32767,thresh32));
|
cannam@154
|
291 {
|
cannam@154
|
292 opus_val32 t;
|
cannam@154
|
293 t = N0<<LM;
|
cannam@154
|
294 shift = celt_ilog2(t)>>1;
|
cannam@154
|
295 t = SHL32(t, (7-shift)<<1);
|
cannam@154
|
296 sqrt_1 = celt_rsqrt_norm(t);
|
cannam@154
|
297 }
|
cannam@154
|
298 #else
|
cannam@154
|
299 thresh = .5f*celt_exp2(-.125f*depth);
|
cannam@154
|
300 sqrt_1 = celt_rsqrt(N0<<LM);
|
cannam@154
|
301 #endif
|
cannam@154
|
302
|
cannam@154
|
303 c=0; do
|
cannam@154
|
304 {
|
cannam@154
|
305 celt_norm *X;
|
cannam@154
|
306 opus_val16 prev1;
|
cannam@154
|
307 opus_val16 prev2;
|
cannam@154
|
308 opus_val32 Ediff;
|
cannam@154
|
309 opus_val16 r;
|
cannam@154
|
310 int renormalize=0;
|
cannam@154
|
311 prev1 = prev1logE[c*m->nbEBands+i];
|
cannam@154
|
312 prev2 = prev2logE[c*m->nbEBands+i];
|
cannam@154
|
313 if (C==1)
|
cannam@154
|
314 {
|
cannam@154
|
315 prev1 = MAX16(prev1,prev1logE[m->nbEBands+i]);
|
cannam@154
|
316 prev2 = MAX16(prev2,prev2logE[m->nbEBands+i]);
|
cannam@154
|
317 }
|
cannam@154
|
318 Ediff = EXTEND32(logE[c*m->nbEBands+i])-EXTEND32(MIN16(prev1,prev2));
|
cannam@154
|
319 Ediff = MAX32(0, Ediff);
|
cannam@154
|
320
|
cannam@154
|
321 #ifdef FIXED_POINT
|
cannam@154
|
322 if (Ediff < 16384)
|
cannam@154
|
323 {
|
cannam@154
|
324 opus_val32 r32 = SHR32(celt_exp2(-EXTRACT16(Ediff)),1);
|
cannam@154
|
325 r = 2*MIN16(16383,r32);
|
cannam@154
|
326 } else {
|
cannam@154
|
327 r = 0;
|
cannam@154
|
328 }
|
cannam@154
|
329 if (LM==3)
|
cannam@154
|
330 r = MULT16_16_Q14(23170, MIN32(23169, r));
|
cannam@154
|
331 r = SHR16(MIN16(thresh, r),1);
|
cannam@154
|
332 r = SHR32(MULT16_16_Q15(sqrt_1, r),shift);
|
cannam@154
|
333 #else
|
cannam@154
|
334 /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because
|
cannam@154
|
335 short blocks don't have the same energy as long */
|
cannam@154
|
336 r = 2.f*celt_exp2(-Ediff);
|
cannam@154
|
337 if (LM==3)
|
cannam@154
|
338 r *= 1.41421356f;
|
cannam@154
|
339 r = MIN16(thresh, r);
|
cannam@154
|
340 r = r*sqrt_1;
|
cannam@154
|
341 #endif
|
cannam@154
|
342 X = X_+c*size+(m->eBands[i]<<LM);
|
cannam@154
|
343 for (k=0;k<1<<LM;k++)
|
cannam@154
|
344 {
|
cannam@154
|
345 /* Detect collapse */
|
cannam@154
|
346 if (!(collapse_masks[i*C+c]&1<<k))
|
cannam@154
|
347 {
|
cannam@154
|
348 /* Fill with noise */
|
cannam@154
|
349 for (j=0;j<N0;j++)
|
cannam@154
|
350 {
|
cannam@154
|
351 seed = celt_lcg_rand(seed);
|
cannam@154
|
352 X[(j<<LM)+k] = (seed&0x8000 ? r : -r);
|
cannam@154
|
353 }
|
cannam@154
|
354 renormalize = 1;
|
cannam@154
|
355 }
|
cannam@154
|
356 }
|
cannam@154
|
357 /* We just added some energy, so we need to renormalise */
|
cannam@154
|
358 if (renormalize)
|
cannam@154
|
359 renormalise_vector(X, N0<<LM, Q15ONE, arch);
|
cannam@154
|
360 } while (++c<C);
|
cannam@154
|
361 }
|
cannam@154
|
362 }
|
cannam@154
|
363
|
cannam@154
|
364 /* Compute the weights to use for optimizing normalized distortion across
|
cannam@154
|
365 channels. We use the amplitude to weight square distortion, which means
|
cannam@154
|
366 that we use the square root of the value we would have been using if we
|
cannam@154
|
367 wanted to minimize the MSE in the non-normalized domain. This roughly
|
cannam@154
|
368 corresponds to some quick-and-dirty perceptual experiments I ran to
|
cannam@154
|
369 measure inter-aural masking (there doesn't seem to be any published data
|
cannam@154
|
370 on the topic). */
|
cannam@154
|
371 static void compute_channel_weights(celt_ener Ex, celt_ener Ey, opus_val16 w[2])
|
cannam@154
|
372 {
|
cannam@154
|
373 celt_ener minE;
|
cannam@154
|
374 #if FIXED_POINT
|
cannam@154
|
375 int shift;
|
cannam@154
|
376 #endif
|
cannam@154
|
377 minE = MIN32(Ex, Ey);
|
cannam@154
|
378 /* Adjustment to make the weights a bit more conservative. */
|
cannam@154
|
379 Ex = ADD32(Ex, minE/3);
|
cannam@154
|
380 Ey = ADD32(Ey, minE/3);
|
cannam@154
|
381 #if FIXED_POINT
|
cannam@154
|
382 shift = celt_ilog2(EPSILON+MAX32(Ex, Ey))-14;
|
cannam@154
|
383 #endif
|
cannam@154
|
384 w[0] = VSHR32(Ex, shift);
|
cannam@154
|
385 w[1] = VSHR32(Ey, shift);
|
cannam@154
|
386 }
|
cannam@154
|
387
|
cannam@154
|
388 static void intensity_stereo(const CELTMode *m, celt_norm * OPUS_RESTRICT X, const celt_norm * OPUS_RESTRICT Y, const celt_ener *bandE, int bandID, int N)
|
cannam@154
|
389 {
|
cannam@154
|
390 int i = bandID;
|
cannam@154
|
391 int j;
|
cannam@154
|
392 opus_val16 a1, a2;
|
cannam@154
|
393 opus_val16 left, right;
|
cannam@154
|
394 opus_val16 norm;
|
cannam@154
|
395 #ifdef FIXED_POINT
|
cannam@154
|
396 int shift = celt_zlog2(MAX32(bandE[i], bandE[i+m->nbEBands]))-13;
|
cannam@154
|
397 #endif
|
cannam@154
|
398 left = VSHR32(bandE[i],shift);
|
cannam@154
|
399 right = VSHR32(bandE[i+m->nbEBands],shift);
|
cannam@154
|
400 norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right));
|
cannam@154
|
401 a1 = DIV32_16(SHL32(EXTEND32(left),14),norm);
|
cannam@154
|
402 a2 = DIV32_16(SHL32(EXTEND32(right),14),norm);
|
cannam@154
|
403 for (j=0;j<N;j++)
|
cannam@154
|
404 {
|
cannam@154
|
405 celt_norm r, l;
|
cannam@154
|
406 l = X[j];
|
cannam@154
|
407 r = Y[j];
|
cannam@154
|
408 X[j] = EXTRACT16(SHR32(MAC16_16(MULT16_16(a1, l), a2, r), 14));
|
cannam@154
|
409 /* Side is not encoded, no need to calculate */
|
cannam@154
|
410 }
|
cannam@154
|
411 }
|
cannam@154
|
412
|
cannam@154
|
413 static void stereo_split(celt_norm * OPUS_RESTRICT X, celt_norm * OPUS_RESTRICT Y, int N)
|
cannam@154
|
414 {
|
cannam@154
|
415 int j;
|
cannam@154
|
416 for (j=0;j<N;j++)
|
cannam@154
|
417 {
|
cannam@154
|
418 opus_val32 r, l;
|
cannam@154
|
419 l = MULT16_16(QCONST16(.70710678f, 15), X[j]);
|
cannam@154
|
420 r = MULT16_16(QCONST16(.70710678f, 15), Y[j]);
|
cannam@154
|
421 X[j] = EXTRACT16(SHR32(ADD32(l, r), 15));
|
cannam@154
|
422 Y[j] = EXTRACT16(SHR32(SUB32(r, l), 15));
|
cannam@154
|
423 }
|
cannam@154
|
424 }
|
cannam@154
|
425
|
cannam@154
|
426 static void stereo_merge(celt_norm * OPUS_RESTRICT X, celt_norm * OPUS_RESTRICT Y, opus_val16 mid, int N, int arch)
|
cannam@154
|
427 {
|
cannam@154
|
428 int j;
|
cannam@154
|
429 opus_val32 xp=0, side=0;
|
cannam@154
|
430 opus_val32 El, Er;
|
cannam@154
|
431 opus_val16 mid2;
|
cannam@154
|
432 #ifdef FIXED_POINT
|
cannam@154
|
433 int kl, kr;
|
cannam@154
|
434 #endif
|
cannam@154
|
435 opus_val32 t, lgain, rgain;
|
cannam@154
|
436
|
cannam@154
|
437 /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
|
cannam@154
|
438 dual_inner_prod(Y, X, Y, N, &xp, &side, arch);
|
cannam@154
|
439 /* Compensating for the mid normalization */
|
cannam@154
|
440 xp = MULT16_32_Q15(mid, xp);
|
cannam@154
|
441 /* mid and side are in Q15, not Q14 like X and Y */
|
cannam@154
|
442 mid2 = SHR16(mid, 1);
|
cannam@154
|
443 El = MULT16_16(mid2, mid2) + side - 2*xp;
|
cannam@154
|
444 Er = MULT16_16(mid2, mid2) + side + 2*xp;
|
cannam@154
|
445 if (Er < QCONST32(6e-4f, 28) || El < QCONST32(6e-4f, 28))
|
cannam@154
|
446 {
|
cannam@154
|
447 OPUS_COPY(Y, X, N);
|
cannam@154
|
448 return;
|
cannam@154
|
449 }
|
cannam@154
|
450
|
cannam@154
|
451 #ifdef FIXED_POINT
|
cannam@154
|
452 kl = celt_ilog2(El)>>1;
|
cannam@154
|
453 kr = celt_ilog2(Er)>>1;
|
cannam@154
|
454 #endif
|
cannam@154
|
455 t = VSHR32(El, (kl-7)<<1);
|
cannam@154
|
456 lgain = celt_rsqrt_norm(t);
|
cannam@154
|
457 t = VSHR32(Er, (kr-7)<<1);
|
cannam@154
|
458 rgain = celt_rsqrt_norm(t);
|
cannam@154
|
459
|
cannam@154
|
460 #ifdef FIXED_POINT
|
cannam@154
|
461 if (kl < 7)
|
cannam@154
|
462 kl = 7;
|
cannam@154
|
463 if (kr < 7)
|
cannam@154
|
464 kr = 7;
|
cannam@154
|
465 #endif
|
cannam@154
|
466
|
cannam@154
|
467 for (j=0;j<N;j++)
|
cannam@154
|
468 {
|
cannam@154
|
469 celt_norm r, l;
|
cannam@154
|
470 /* Apply mid scaling (side is already scaled) */
|
cannam@154
|
471 l = MULT16_16_P15(mid, X[j]);
|
cannam@154
|
472 r = Y[j];
|
cannam@154
|
473 X[j] = EXTRACT16(PSHR32(MULT16_16(lgain, SUB16(l,r)), kl+1));
|
cannam@154
|
474 Y[j] = EXTRACT16(PSHR32(MULT16_16(rgain, ADD16(l,r)), kr+1));
|
cannam@154
|
475 }
|
cannam@154
|
476 }
|
cannam@154
|
477
|
cannam@154
|
478 /* Decide whether we should spread the pulses in the current frame */
|
cannam@154
|
479 int spreading_decision(const CELTMode *m, const celt_norm *X, int *average,
|
cannam@154
|
480 int last_decision, int *hf_average, int *tapset_decision, int update_hf,
|
cannam@154
|
481 int end, int C, int M, const int *spread_weight)
|
cannam@154
|
482 {
|
cannam@154
|
483 int i, c, N0;
|
cannam@154
|
484 int sum = 0, nbBands=0;
|
cannam@154
|
485 const opus_int16 * OPUS_RESTRICT eBands = m->eBands;
|
cannam@154
|
486 int decision;
|
cannam@154
|
487 int hf_sum=0;
|
cannam@154
|
488
|
cannam@154
|
489 celt_assert(end>0);
|
cannam@154
|
490
|
cannam@154
|
491 N0 = M*m->shortMdctSize;
|
cannam@154
|
492
|
cannam@154
|
493 if (M*(eBands[end]-eBands[end-1]) <= 8)
|
cannam@154
|
494 return SPREAD_NONE;
|
cannam@154
|
495 c=0; do {
|
cannam@154
|
496 for (i=0;i<end;i++)
|
cannam@154
|
497 {
|
cannam@154
|
498 int j, N, tmp=0;
|
cannam@154
|
499 int tcount[3] = {0,0,0};
|
cannam@154
|
500 const celt_norm * OPUS_RESTRICT x = X+M*eBands[i]+c*N0;
|
cannam@154
|
501 N = M*(eBands[i+1]-eBands[i]);
|
cannam@154
|
502 if (N<=8)
|
cannam@154
|
503 continue;
|
cannam@154
|
504 /* Compute rough CDF of |x[j]| */
|
cannam@154
|
505 for (j=0;j<N;j++)
|
cannam@154
|
506 {
|
cannam@154
|
507 opus_val32 x2N; /* Q13 */
|
cannam@154
|
508
|
cannam@154
|
509 x2N = MULT16_16(MULT16_16_Q15(x[j], x[j]), N);
|
cannam@154
|
510 if (x2N < QCONST16(0.25f,13))
|
cannam@154
|
511 tcount[0]++;
|
cannam@154
|
512 if (x2N < QCONST16(0.0625f,13))
|
cannam@154
|
513 tcount[1]++;
|
cannam@154
|
514 if (x2N < QCONST16(0.015625f,13))
|
cannam@154
|
515 tcount[2]++;
|
cannam@154
|
516 }
|
cannam@154
|
517
|
cannam@154
|
518 /* Only include four last bands (8 kHz and up) */
|
cannam@154
|
519 if (i>m->nbEBands-4)
|
cannam@154
|
520 hf_sum += celt_udiv(32*(tcount[1]+tcount[0]), N);
|
cannam@154
|
521 tmp = (2*tcount[2] >= N) + (2*tcount[1] >= N) + (2*tcount[0] >= N);
|
cannam@154
|
522 sum += tmp*spread_weight[i];
|
cannam@154
|
523 nbBands+=spread_weight[i];
|
cannam@154
|
524 }
|
cannam@154
|
525 } while (++c<C);
|
cannam@154
|
526
|
cannam@154
|
527 if (update_hf)
|
cannam@154
|
528 {
|
cannam@154
|
529 if (hf_sum)
|
cannam@154
|
530 hf_sum = celt_udiv(hf_sum, C*(4-m->nbEBands+end));
|
cannam@154
|
531 *hf_average = (*hf_average+hf_sum)>>1;
|
cannam@154
|
532 hf_sum = *hf_average;
|
cannam@154
|
533 if (*tapset_decision==2)
|
cannam@154
|
534 hf_sum += 4;
|
cannam@154
|
535 else if (*tapset_decision==0)
|
cannam@154
|
536 hf_sum -= 4;
|
cannam@154
|
537 if (hf_sum > 22)
|
cannam@154
|
538 *tapset_decision=2;
|
cannam@154
|
539 else if (hf_sum > 18)
|
cannam@154
|
540 *tapset_decision=1;
|
cannam@154
|
541 else
|
cannam@154
|
542 *tapset_decision=0;
|
cannam@154
|
543 }
|
cannam@154
|
544 /*printf("%d %d %d\n", hf_sum, *hf_average, *tapset_decision);*/
|
cannam@154
|
545 celt_assert(nbBands>0); /* end has to be non-zero */
|
cannam@154
|
546 celt_assert(sum>=0);
|
cannam@154
|
547 sum = celt_udiv((opus_int32)sum<<8, nbBands);
|
cannam@154
|
548 /* Recursive averaging */
|
cannam@154
|
549 sum = (sum+*average)>>1;
|
cannam@154
|
550 *average = sum;
|
cannam@154
|
551 /* Hysteresis */
|
cannam@154
|
552 sum = (3*sum + (((3-last_decision)<<7) + 64) + 2)>>2;
|
cannam@154
|
553 if (sum < 80)
|
cannam@154
|
554 {
|
cannam@154
|
555 decision = SPREAD_AGGRESSIVE;
|
cannam@154
|
556 } else if (sum < 256)
|
cannam@154
|
557 {
|
cannam@154
|
558 decision = SPREAD_NORMAL;
|
cannam@154
|
559 } else if (sum < 384)
|
cannam@154
|
560 {
|
cannam@154
|
561 decision = SPREAD_LIGHT;
|
cannam@154
|
562 } else {
|
cannam@154
|
563 decision = SPREAD_NONE;
|
cannam@154
|
564 }
|
cannam@154
|
565 #ifdef FUZZING
|
cannam@154
|
566 decision = rand()&0x3;
|
cannam@154
|
567 *tapset_decision=rand()%3;
|
cannam@154
|
568 #endif
|
cannam@154
|
569 return decision;
|
cannam@154
|
570 }
|
cannam@154
|
571
|
cannam@154
|
572 /* Indexing table for converting from natural Hadamard to ordery Hadamard
|
cannam@154
|
573 This is essentially a bit-reversed Gray, on top of which we've added
|
cannam@154
|
574 an inversion of the order because we want the DC at the end rather than
|
cannam@154
|
575 the beginning. The lines are for N=2, 4, 8, 16 */
|
cannam@154
|
576 static const int ordery_table[] = {
|
cannam@154
|
577 1, 0,
|
cannam@154
|
578 3, 0, 2, 1,
|
cannam@154
|
579 7, 0, 4, 3, 6, 1, 5, 2,
|
cannam@154
|
580 15, 0, 8, 7, 12, 3, 11, 4, 14, 1, 9, 6, 13, 2, 10, 5,
|
cannam@154
|
581 };
|
cannam@154
|
582
|
cannam@154
|
583 static void deinterleave_hadamard(celt_norm *X, int N0, int stride, int hadamard)
|
cannam@154
|
584 {
|
cannam@154
|
585 int i,j;
|
cannam@154
|
586 VARDECL(celt_norm, tmp);
|
cannam@154
|
587 int N;
|
cannam@154
|
588 SAVE_STACK;
|
cannam@154
|
589 N = N0*stride;
|
cannam@154
|
590 ALLOC(tmp, N, celt_norm);
|
cannam@154
|
591 celt_assert(stride>0);
|
cannam@154
|
592 if (hadamard)
|
cannam@154
|
593 {
|
cannam@154
|
594 const int *ordery = ordery_table+stride-2;
|
cannam@154
|
595 for (i=0;i<stride;i++)
|
cannam@154
|
596 {
|
cannam@154
|
597 for (j=0;j<N0;j++)
|
cannam@154
|
598 tmp[ordery[i]*N0+j] = X[j*stride+i];
|
cannam@154
|
599 }
|
cannam@154
|
600 } else {
|
cannam@154
|
601 for (i=0;i<stride;i++)
|
cannam@154
|
602 for (j=0;j<N0;j++)
|
cannam@154
|
603 tmp[i*N0+j] = X[j*stride+i];
|
cannam@154
|
604 }
|
cannam@154
|
605 OPUS_COPY(X, tmp, N);
|
cannam@154
|
606 RESTORE_STACK;
|
cannam@154
|
607 }
|
cannam@154
|
608
|
cannam@154
|
609 static void interleave_hadamard(celt_norm *X, int N0, int stride, int hadamard)
|
cannam@154
|
610 {
|
cannam@154
|
611 int i,j;
|
cannam@154
|
612 VARDECL(celt_norm, tmp);
|
cannam@154
|
613 int N;
|
cannam@154
|
614 SAVE_STACK;
|
cannam@154
|
615 N = N0*stride;
|
cannam@154
|
616 ALLOC(tmp, N, celt_norm);
|
cannam@154
|
617 if (hadamard)
|
cannam@154
|
618 {
|
cannam@154
|
619 const int *ordery = ordery_table+stride-2;
|
cannam@154
|
620 for (i=0;i<stride;i++)
|
cannam@154
|
621 for (j=0;j<N0;j++)
|
cannam@154
|
622 tmp[j*stride+i] = X[ordery[i]*N0+j];
|
cannam@154
|
623 } else {
|
cannam@154
|
624 for (i=0;i<stride;i++)
|
cannam@154
|
625 for (j=0;j<N0;j++)
|
cannam@154
|
626 tmp[j*stride+i] = X[i*N0+j];
|
cannam@154
|
627 }
|
cannam@154
|
628 OPUS_COPY(X, tmp, N);
|
cannam@154
|
629 RESTORE_STACK;
|
cannam@154
|
630 }
|
cannam@154
|
631
|
cannam@154
|
632 void haar1(celt_norm *X, int N0, int stride)
|
cannam@154
|
633 {
|
cannam@154
|
634 int i, j;
|
cannam@154
|
635 N0 >>= 1;
|
cannam@154
|
636 for (i=0;i<stride;i++)
|
cannam@154
|
637 for (j=0;j<N0;j++)
|
cannam@154
|
638 {
|
cannam@154
|
639 opus_val32 tmp1, tmp2;
|
cannam@154
|
640 tmp1 = MULT16_16(QCONST16(.70710678f,15), X[stride*2*j+i]);
|
cannam@154
|
641 tmp2 = MULT16_16(QCONST16(.70710678f,15), X[stride*(2*j+1)+i]);
|
cannam@154
|
642 X[stride*2*j+i] = EXTRACT16(PSHR32(ADD32(tmp1, tmp2), 15));
|
cannam@154
|
643 X[stride*(2*j+1)+i] = EXTRACT16(PSHR32(SUB32(tmp1, tmp2), 15));
|
cannam@154
|
644 }
|
cannam@154
|
645 }
|
cannam@154
|
646
|
cannam@154
|
647 static int compute_qn(int N, int b, int offset, int pulse_cap, int stereo)
|
cannam@154
|
648 {
|
cannam@154
|
649 static const opus_int16 exp2_table8[8] =
|
cannam@154
|
650 {16384, 17866, 19483, 21247, 23170, 25267, 27554, 30048};
|
cannam@154
|
651 int qn, qb;
|
cannam@154
|
652 int N2 = 2*N-1;
|
cannam@154
|
653 if (stereo && N==2)
|
cannam@154
|
654 N2--;
|
cannam@154
|
655 /* The upper limit ensures that in a stereo split with itheta==16384, we'll
|
cannam@154
|
656 always have enough bits left over to code at least one pulse in the
|
cannam@154
|
657 side; otherwise it would collapse, since it doesn't get folded. */
|
cannam@154
|
658 qb = celt_sudiv(b+N2*offset, N2);
|
cannam@154
|
659 qb = IMIN(b-pulse_cap-(4<<BITRES), qb);
|
cannam@154
|
660
|
cannam@154
|
661 qb = IMIN(8<<BITRES, qb);
|
cannam@154
|
662
|
cannam@154
|
663 if (qb<(1<<BITRES>>1)) {
|
cannam@154
|
664 qn = 1;
|
cannam@154
|
665 } else {
|
cannam@154
|
666 qn = exp2_table8[qb&0x7]>>(14-(qb>>BITRES));
|
cannam@154
|
667 qn = (qn+1)>>1<<1;
|
cannam@154
|
668 }
|
cannam@154
|
669 celt_assert(qn <= 256);
|
cannam@154
|
670 return qn;
|
cannam@154
|
671 }
|
cannam@154
|
672
|
cannam@154
|
673 struct band_ctx {
|
cannam@154
|
674 int encode;
|
cannam@154
|
675 int resynth;
|
cannam@154
|
676 const CELTMode *m;
|
cannam@154
|
677 int i;
|
cannam@154
|
678 int intensity;
|
cannam@154
|
679 int spread;
|
cannam@154
|
680 int tf_change;
|
cannam@154
|
681 ec_ctx *ec;
|
cannam@154
|
682 opus_int32 remaining_bits;
|
cannam@154
|
683 const celt_ener *bandE;
|
cannam@154
|
684 opus_uint32 seed;
|
cannam@154
|
685 int arch;
|
cannam@154
|
686 int theta_round;
|
cannam@154
|
687 int disable_inv;
|
cannam@154
|
688 int avoid_split_noise;
|
cannam@154
|
689 };
|
cannam@154
|
690
|
cannam@154
|
691 struct split_ctx {
|
cannam@154
|
692 int inv;
|
cannam@154
|
693 int imid;
|
cannam@154
|
694 int iside;
|
cannam@154
|
695 int delta;
|
cannam@154
|
696 int itheta;
|
cannam@154
|
697 int qalloc;
|
cannam@154
|
698 };
|
cannam@154
|
699
|
cannam@154
|
700 static void compute_theta(struct band_ctx *ctx, struct split_ctx *sctx,
|
cannam@154
|
701 celt_norm *X, celt_norm *Y, int N, int *b, int B, int B0,
|
cannam@154
|
702 int LM,
|
cannam@154
|
703 int stereo, int *fill)
|
cannam@154
|
704 {
|
cannam@154
|
705 int qn;
|
cannam@154
|
706 int itheta=0;
|
cannam@154
|
707 int delta;
|
cannam@154
|
708 int imid, iside;
|
cannam@154
|
709 int qalloc;
|
cannam@154
|
710 int pulse_cap;
|
cannam@154
|
711 int offset;
|
cannam@154
|
712 opus_int32 tell;
|
cannam@154
|
713 int inv=0;
|
cannam@154
|
714 int encode;
|
cannam@154
|
715 const CELTMode *m;
|
cannam@154
|
716 int i;
|
cannam@154
|
717 int intensity;
|
cannam@154
|
718 ec_ctx *ec;
|
cannam@154
|
719 const celt_ener *bandE;
|
cannam@154
|
720
|
cannam@154
|
721 encode = ctx->encode;
|
cannam@154
|
722 m = ctx->m;
|
cannam@154
|
723 i = ctx->i;
|
cannam@154
|
724 intensity = ctx->intensity;
|
cannam@154
|
725 ec = ctx->ec;
|
cannam@154
|
726 bandE = ctx->bandE;
|
cannam@154
|
727
|
cannam@154
|
728 /* Decide on the resolution to give to the split parameter theta */
|
cannam@154
|
729 pulse_cap = m->logN[i]+LM*(1<<BITRES);
|
cannam@154
|
730 offset = (pulse_cap>>1) - (stereo&&N==2 ? QTHETA_OFFSET_TWOPHASE : QTHETA_OFFSET);
|
cannam@154
|
731 qn = compute_qn(N, *b, offset, pulse_cap, stereo);
|
cannam@154
|
732 if (stereo && i>=intensity)
|
cannam@154
|
733 qn = 1;
|
cannam@154
|
734 if (encode)
|
cannam@154
|
735 {
|
cannam@154
|
736 /* theta is the atan() of the ratio between the (normalized)
|
cannam@154
|
737 side and mid. With just that parameter, we can re-scale both
|
cannam@154
|
738 mid and side because we know that 1) they have unit norm and
|
cannam@154
|
739 2) they are orthogonal. */
|
cannam@154
|
740 itheta = stereo_itheta(X, Y, stereo, N, ctx->arch);
|
cannam@154
|
741 }
|
cannam@154
|
742 tell = ec_tell_frac(ec);
|
cannam@154
|
743 if (qn!=1)
|
cannam@154
|
744 {
|
cannam@154
|
745 if (encode)
|
cannam@154
|
746 {
|
cannam@154
|
747 if (!stereo || ctx->theta_round == 0)
|
cannam@154
|
748 {
|
cannam@154
|
749 itheta = (itheta*(opus_int32)qn+8192)>>14;
|
cannam@154
|
750 if (!stereo && ctx->avoid_split_noise && itheta > 0 && itheta < qn)
|
cannam@154
|
751 {
|
cannam@154
|
752 /* Check if the selected value of theta will cause the bit allocation
|
cannam@154
|
753 to inject noise on one side. If so, make sure the energy of that side
|
cannam@154
|
754 is zero. */
|
cannam@154
|
755 int unquantized = celt_udiv((opus_int32)itheta*16384, qn);
|
cannam@154
|
756 imid = bitexact_cos((opus_int16)unquantized);
|
cannam@154
|
757 iside = bitexact_cos((opus_int16)(16384-unquantized));
|
cannam@154
|
758 delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid));
|
cannam@154
|
759 if (delta > *b)
|
cannam@154
|
760 itheta = qn;
|
cannam@154
|
761 else if (delta < -*b)
|
cannam@154
|
762 itheta = 0;
|
cannam@154
|
763 }
|
cannam@154
|
764 } else {
|
cannam@154
|
765 int down;
|
cannam@154
|
766 /* Bias quantization towards itheta=0 and itheta=16384. */
|
cannam@154
|
767 int bias = itheta > 8192 ? 32767/qn : -32767/qn;
|
cannam@154
|
768 down = IMIN(qn-1, IMAX(0, (itheta*(opus_int32)qn + bias)>>14));
|
cannam@154
|
769 if (ctx->theta_round < 0)
|
cannam@154
|
770 itheta = down;
|
cannam@154
|
771 else
|
cannam@154
|
772 itheta = down+1;
|
cannam@154
|
773 }
|
cannam@154
|
774 }
|
cannam@154
|
775 /* Entropy coding of the angle. We use a uniform pdf for the
|
cannam@154
|
776 time split, a step for stereo, and a triangular one for the rest. */
|
cannam@154
|
777 if (stereo && N>2)
|
cannam@154
|
778 {
|
cannam@154
|
779 int p0 = 3;
|
cannam@154
|
780 int x = itheta;
|
cannam@154
|
781 int x0 = qn/2;
|
cannam@154
|
782 int ft = p0*(x0+1) + x0;
|
cannam@154
|
783 /* Use a probability of p0 up to itheta=8192 and then use 1 after */
|
cannam@154
|
784 if (encode)
|
cannam@154
|
785 {
|
cannam@154
|
786 ec_encode(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft);
|
cannam@154
|
787 } else {
|
cannam@154
|
788 int fs;
|
cannam@154
|
789 fs=ec_decode(ec,ft);
|
cannam@154
|
790 if (fs<(x0+1)*p0)
|
cannam@154
|
791 x=fs/p0;
|
cannam@154
|
792 else
|
cannam@154
|
793 x=x0+1+(fs-(x0+1)*p0);
|
cannam@154
|
794 ec_dec_update(ec,x<=x0?p0*x:(x-1-x0)+(x0+1)*p0,x<=x0?p0*(x+1):(x-x0)+(x0+1)*p0,ft);
|
cannam@154
|
795 itheta = x;
|
cannam@154
|
796 }
|
cannam@154
|
797 } else if (B0>1 || stereo) {
|
cannam@154
|
798 /* Uniform pdf */
|
cannam@154
|
799 if (encode)
|
cannam@154
|
800 ec_enc_uint(ec, itheta, qn+1);
|
cannam@154
|
801 else
|
cannam@154
|
802 itheta = ec_dec_uint(ec, qn+1);
|
cannam@154
|
803 } else {
|
cannam@154
|
804 int fs=1, ft;
|
cannam@154
|
805 ft = ((qn>>1)+1)*((qn>>1)+1);
|
cannam@154
|
806 if (encode)
|
cannam@154
|
807 {
|
cannam@154
|
808 int fl;
|
cannam@154
|
809
|
cannam@154
|
810 fs = itheta <= (qn>>1) ? itheta + 1 : qn + 1 - itheta;
|
cannam@154
|
811 fl = itheta <= (qn>>1) ? itheta*(itheta + 1)>>1 :
|
cannam@154
|
812 ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1);
|
cannam@154
|
813
|
cannam@154
|
814 ec_encode(ec, fl, fl+fs, ft);
|
cannam@154
|
815 } else {
|
cannam@154
|
816 /* Triangular pdf */
|
cannam@154
|
817 int fl=0;
|
cannam@154
|
818 int fm;
|
cannam@154
|
819 fm = ec_decode(ec, ft);
|
cannam@154
|
820
|
cannam@154
|
821 if (fm < ((qn>>1)*((qn>>1) + 1)>>1))
|
cannam@154
|
822 {
|
cannam@154
|
823 itheta = (isqrt32(8*(opus_uint32)fm + 1) - 1)>>1;
|
cannam@154
|
824 fs = itheta + 1;
|
cannam@154
|
825 fl = itheta*(itheta + 1)>>1;
|
cannam@154
|
826 }
|
cannam@154
|
827 else
|
cannam@154
|
828 {
|
cannam@154
|
829 itheta = (2*(qn + 1)
|
cannam@154
|
830 - isqrt32(8*(opus_uint32)(ft - fm - 1) + 1))>>1;
|
cannam@154
|
831 fs = qn + 1 - itheta;
|
cannam@154
|
832 fl = ft - ((qn + 1 - itheta)*(qn + 2 - itheta)>>1);
|
cannam@154
|
833 }
|
cannam@154
|
834
|
cannam@154
|
835 ec_dec_update(ec, fl, fl+fs, ft);
|
cannam@154
|
836 }
|
cannam@154
|
837 }
|
cannam@154
|
838 celt_assert(itheta>=0);
|
cannam@154
|
839 itheta = celt_udiv((opus_int32)itheta*16384, qn);
|
cannam@154
|
840 if (encode && stereo)
|
cannam@154
|
841 {
|
cannam@154
|
842 if (itheta==0)
|
cannam@154
|
843 intensity_stereo(m, X, Y, bandE, i, N);
|
cannam@154
|
844 else
|
cannam@154
|
845 stereo_split(X, Y, N);
|
cannam@154
|
846 }
|
cannam@154
|
847 /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate.
|
cannam@154
|
848 Let's do that at higher complexity */
|
cannam@154
|
849 } else if (stereo) {
|
cannam@154
|
850 if (encode)
|
cannam@154
|
851 {
|
cannam@154
|
852 inv = itheta > 8192 && !ctx->disable_inv;
|
cannam@154
|
853 if (inv)
|
cannam@154
|
854 {
|
cannam@154
|
855 int j;
|
cannam@154
|
856 for (j=0;j<N;j++)
|
cannam@154
|
857 Y[j] = -Y[j];
|
cannam@154
|
858 }
|
cannam@154
|
859 intensity_stereo(m, X, Y, bandE, i, N);
|
cannam@154
|
860 }
|
cannam@154
|
861 if (*b>2<<BITRES && ctx->remaining_bits > 2<<BITRES)
|
cannam@154
|
862 {
|
cannam@154
|
863 if (encode)
|
cannam@154
|
864 ec_enc_bit_logp(ec, inv, 2);
|
cannam@154
|
865 else
|
cannam@154
|
866 inv = ec_dec_bit_logp(ec, 2);
|
cannam@154
|
867 } else
|
cannam@154
|
868 inv = 0;
|
cannam@154
|
869 /* inv flag override to avoid problems with downmixing. */
|
cannam@154
|
870 if (ctx->disable_inv)
|
cannam@154
|
871 inv = 0;
|
cannam@154
|
872 itheta = 0;
|
cannam@154
|
873 }
|
cannam@154
|
874 qalloc = ec_tell_frac(ec) - tell;
|
cannam@154
|
875 *b -= qalloc;
|
cannam@154
|
876
|
cannam@154
|
877 if (itheta == 0)
|
cannam@154
|
878 {
|
cannam@154
|
879 imid = 32767;
|
cannam@154
|
880 iside = 0;
|
cannam@154
|
881 *fill &= (1<<B)-1;
|
cannam@154
|
882 delta = -16384;
|
cannam@154
|
883 } else if (itheta == 16384)
|
cannam@154
|
884 {
|
cannam@154
|
885 imid = 0;
|
cannam@154
|
886 iside = 32767;
|
cannam@154
|
887 *fill &= ((1<<B)-1)<<B;
|
cannam@154
|
888 delta = 16384;
|
cannam@154
|
889 } else {
|
cannam@154
|
890 imid = bitexact_cos((opus_int16)itheta);
|
cannam@154
|
891 iside = bitexact_cos((opus_int16)(16384-itheta));
|
cannam@154
|
892 /* This is the mid vs side allocation that minimizes squared error
|
cannam@154
|
893 in that band. */
|
cannam@154
|
894 delta = FRAC_MUL16((N-1)<<7,bitexact_log2tan(iside,imid));
|
cannam@154
|
895 }
|
cannam@154
|
896
|
cannam@154
|
897 sctx->inv = inv;
|
cannam@154
|
898 sctx->imid = imid;
|
cannam@154
|
899 sctx->iside = iside;
|
cannam@154
|
900 sctx->delta = delta;
|
cannam@154
|
901 sctx->itheta = itheta;
|
cannam@154
|
902 sctx->qalloc = qalloc;
|
cannam@154
|
903 }
|
cannam@154
|
904 static unsigned quant_band_n1(struct band_ctx *ctx, celt_norm *X, celt_norm *Y, int b,
|
cannam@154
|
905 celt_norm *lowband_out)
|
cannam@154
|
906 {
|
cannam@154
|
907 int c;
|
cannam@154
|
908 int stereo;
|
cannam@154
|
909 celt_norm *x = X;
|
cannam@154
|
910 int encode;
|
cannam@154
|
911 ec_ctx *ec;
|
cannam@154
|
912
|
cannam@154
|
913 encode = ctx->encode;
|
cannam@154
|
914 ec = ctx->ec;
|
cannam@154
|
915
|
cannam@154
|
916 stereo = Y != NULL;
|
cannam@154
|
917 c=0; do {
|
cannam@154
|
918 int sign=0;
|
cannam@154
|
919 if (ctx->remaining_bits>=1<<BITRES)
|
cannam@154
|
920 {
|
cannam@154
|
921 if (encode)
|
cannam@154
|
922 {
|
cannam@154
|
923 sign = x[0]<0;
|
cannam@154
|
924 ec_enc_bits(ec, sign, 1);
|
cannam@154
|
925 } else {
|
cannam@154
|
926 sign = ec_dec_bits(ec, 1);
|
cannam@154
|
927 }
|
cannam@154
|
928 ctx->remaining_bits -= 1<<BITRES;
|
cannam@154
|
929 b-=1<<BITRES;
|
cannam@154
|
930 }
|
cannam@154
|
931 if (ctx->resynth)
|
cannam@154
|
932 x[0] = sign ? -NORM_SCALING : NORM_SCALING;
|
cannam@154
|
933 x = Y;
|
cannam@154
|
934 } while (++c<1+stereo);
|
cannam@154
|
935 if (lowband_out)
|
cannam@154
|
936 lowband_out[0] = SHR16(X[0],4);
|
cannam@154
|
937 return 1;
|
cannam@154
|
938 }
|
cannam@154
|
939
|
cannam@154
|
940 /* This function is responsible for encoding and decoding a mono partition.
|
cannam@154
|
941 It can split the band in two and transmit the energy difference with
|
cannam@154
|
942 the two half-bands. It can be called recursively so bands can end up being
|
cannam@154
|
943 split in 8 parts. */
|
cannam@154
|
944 static unsigned quant_partition(struct band_ctx *ctx, celt_norm *X,
|
cannam@154
|
945 int N, int b, int B, celt_norm *lowband,
|
cannam@154
|
946 int LM,
|
cannam@154
|
947 opus_val16 gain, int fill)
|
cannam@154
|
948 {
|
cannam@154
|
949 const unsigned char *cache;
|
cannam@154
|
950 int q;
|
cannam@154
|
951 int curr_bits;
|
cannam@154
|
952 int imid=0, iside=0;
|
cannam@154
|
953 int B0=B;
|
cannam@154
|
954 opus_val16 mid=0, side=0;
|
cannam@154
|
955 unsigned cm=0;
|
cannam@154
|
956 celt_norm *Y=NULL;
|
cannam@154
|
957 int encode;
|
cannam@154
|
958 const CELTMode *m;
|
cannam@154
|
959 int i;
|
cannam@154
|
960 int spread;
|
cannam@154
|
961 ec_ctx *ec;
|
cannam@154
|
962
|
cannam@154
|
963 encode = ctx->encode;
|
cannam@154
|
964 m = ctx->m;
|
cannam@154
|
965 i = ctx->i;
|
cannam@154
|
966 spread = ctx->spread;
|
cannam@154
|
967 ec = ctx->ec;
|
cannam@154
|
968
|
cannam@154
|
969 /* If we need 1.5 more bit than we can produce, split the band in two. */
|
cannam@154
|
970 cache = m->cache.bits + m->cache.index[(LM+1)*m->nbEBands+i];
|
cannam@154
|
971 if (LM != -1 && b > cache[cache[0]]+12 && N>2)
|
cannam@154
|
972 {
|
cannam@154
|
973 int mbits, sbits, delta;
|
cannam@154
|
974 int itheta;
|
cannam@154
|
975 int qalloc;
|
cannam@154
|
976 struct split_ctx sctx;
|
cannam@154
|
977 celt_norm *next_lowband2=NULL;
|
cannam@154
|
978 opus_int32 rebalance;
|
cannam@154
|
979
|
cannam@154
|
980 N >>= 1;
|
cannam@154
|
981 Y = X+N;
|
cannam@154
|
982 LM -= 1;
|
cannam@154
|
983 if (B==1)
|
cannam@154
|
984 fill = (fill&1)|(fill<<1);
|
cannam@154
|
985 B = (B+1)>>1;
|
cannam@154
|
986
|
cannam@154
|
987 compute_theta(ctx, &sctx, X, Y, N, &b, B, B0, LM, 0, &fill);
|
cannam@154
|
988 imid = sctx.imid;
|
cannam@154
|
989 iside = sctx.iside;
|
cannam@154
|
990 delta = sctx.delta;
|
cannam@154
|
991 itheta = sctx.itheta;
|
cannam@154
|
992 qalloc = sctx.qalloc;
|
cannam@154
|
993 #ifdef FIXED_POINT
|
cannam@154
|
994 mid = imid;
|
cannam@154
|
995 side = iside;
|
cannam@154
|
996 #else
|
cannam@154
|
997 mid = (1.f/32768)*imid;
|
cannam@154
|
998 side = (1.f/32768)*iside;
|
cannam@154
|
999 #endif
|
cannam@154
|
1000
|
cannam@154
|
1001 /* Give more bits to low-energy MDCTs than they would otherwise deserve */
|
cannam@154
|
1002 if (B0>1 && (itheta&0x3fff))
|
cannam@154
|
1003 {
|
cannam@154
|
1004 if (itheta > 8192)
|
cannam@154
|
1005 /* Rough approximation for pre-echo masking */
|
cannam@154
|
1006 delta -= delta>>(4-LM);
|
cannam@154
|
1007 else
|
cannam@154
|
1008 /* Corresponds to a forward-masking slope of 1.5 dB per 10 ms */
|
cannam@154
|
1009 delta = IMIN(0, delta + (N<<BITRES>>(5-LM)));
|
cannam@154
|
1010 }
|
cannam@154
|
1011 mbits = IMAX(0, IMIN(b, (b-delta)/2));
|
cannam@154
|
1012 sbits = b-mbits;
|
cannam@154
|
1013 ctx->remaining_bits -= qalloc;
|
cannam@154
|
1014
|
cannam@154
|
1015 if (lowband)
|
cannam@154
|
1016 next_lowband2 = lowband+N; /* >32-bit split case */
|
cannam@154
|
1017
|
cannam@154
|
1018 rebalance = ctx->remaining_bits;
|
cannam@154
|
1019 if (mbits >= sbits)
|
cannam@154
|
1020 {
|
cannam@154
|
1021 cm = quant_partition(ctx, X, N, mbits, B, lowband, LM,
|
cannam@154
|
1022 MULT16_16_P15(gain,mid), fill);
|
cannam@154
|
1023 rebalance = mbits - (rebalance-ctx->remaining_bits);
|
cannam@154
|
1024 if (rebalance > 3<<BITRES && itheta!=0)
|
cannam@154
|
1025 sbits += rebalance - (3<<BITRES);
|
cannam@154
|
1026 cm |= quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM,
|
cannam@154
|
1027 MULT16_16_P15(gain,side), fill>>B)<<(B0>>1);
|
cannam@154
|
1028 } else {
|
cannam@154
|
1029 cm = quant_partition(ctx, Y, N, sbits, B, next_lowband2, LM,
|
cannam@154
|
1030 MULT16_16_P15(gain,side), fill>>B)<<(B0>>1);
|
cannam@154
|
1031 rebalance = sbits - (rebalance-ctx->remaining_bits);
|
cannam@154
|
1032 if (rebalance > 3<<BITRES && itheta!=16384)
|
cannam@154
|
1033 mbits += rebalance - (3<<BITRES);
|
cannam@154
|
1034 cm |= quant_partition(ctx, X, N, mbits, B, lowband, LM,
|
cannam@154
|
1035 MULT16_16_P15(gain,mid), fill);
|
cannam@154
|
1036 }
|
cannam@154
|
1037 } else {
|
cannam@154
|
1038 /* This is the basic no-split case */
|
cannam@154
|
1039 q = bits2pulses(m, i, LM, b);
|
cannam@154
|
1040 curr_bits = pulses2bits(m, i, LM, q);
|
cannam@154
|
1041 ctx->remaining_bits -= curr_bits;
|
cannam@154
|
1042
|
cannam@154
|
1043 /* Ensures we can never bust the budget */
|
cannam@154
|
1044 while (ctx->remaining_bits < 0 && q > 0)
|
cannam@154
|
1045 {
|
cannam@154
|
1046 ctx->remaining_bits += curr_bits;
|
cannam@154
|
1047 q--;
|
cannam@154
|
1048 curr_bits = pulses2bits(m, i, LM, q);
|
cannam@154
|
1049 ctx->remaining_bits -= curr_bits;
|
cannam@154
|
1050 }
|
cannam@154
|
1051
|
cannam@154
|
1052 if (q!=0)
|
cannam@154
|
1053 {
|
cannam@154
|
1054 int K = get_pulses(q);
|
cannam@154
|
1055
|
cannam@154
|
1056 /* Finally do the actual quantization */
|
cannam@154
|
1057 if (encode)
|
cannam@154
|
1058 {
|
cannam@154
|
1059 cm = alg_quant(X, N, K, spread, B, ec, gain, ctx->resynth, ctx->arch);
|
cannam@154
|
1060 } else {
|
cannam@154
|
1061 cm = alg_unquant(X, N, K, spread, B, ec, gain);
|
cannam@154
|
1062 }
|
cannam@154
|
1063 } else {
|
cannam@154
|
1064 /* If there's no pulse, fill the band anyway */
|
cannam@154
|
1065 int j;
|
cannam@154
|
1066 if (ctx->resynth)
|
cannam@154
|
1067 {
|
cannam@154
|
1068 unsigned cm_mask;
|
cannam@154
|
1069 /* B can be as large as 16, so this shift might overflow an int on a
|
cannam@154
|
1070 16-bit platform; use a long to get defined behavior.*/
|
cannam@154
|
1071 cm_mask = (unsigned)(1UL<<B)-1;
|
cannam@154
|
1072 fill &= cm_mask;
|
cannam@154
|
1073 if (!fill)
|
cannam@154
|
1074 {
|
cannam@154
|
1075 OPUS_CLEAR(X, N);
|
cannam@154
|
1076 } else {
|
cannam@154
|
1077 if (lowband == NULL)
|
cannam@154
|
1078 {
|
cannam@154
|
1079 /* Noise */
|
cannam@154
|
1080 for (j=0;j<N;j++)
|
cannam@154
|
1081 {
|
cannam@154
|
1082 ctx->seed = celt_lcg_rand(ctx->seed);
|
cannam@154
|
1083 X[j] = (celt_norm)((opus_int32)ctx->seed>>20);
|
cannam@154
|
1084 }
|
cannam@154
|
1085 cm = cm_mask;
|
cannam@154
|
1086 } else {
|
cannam@154
|
1087 /* Folded spectrum */
|
cannam@154
|
1088 for (j=0;j<N;j++)
|
cannam@154
|
1089 {
|
cannam@154
|
1090 opus_val16 tmp;
|
cannam@154
|
1091 ctx->seed = celt_lcg_rand(ctx->seed);
|
cannam@154
|
1092 /* About 48 dB below the "normal" folding level */
|
cannam@154
|
1093 tmp = QCONST16(1.0f/256, 10);
|
cannam@154
|
1094 tmp = (ctx->seed)&0x8000 ? tmp : -tmp;
|
cannam@154
|
1095 X[j] = lowband[j]+tmp;
|
cannam@154
|
1096 }
|
cannam@154
|
1097 cm = fill;
|
cannam@154
|
1098 }
|
cannam@154
|
1099 renormalise_vector(X, N, gain, ctx->arch);
|
cannam@154
|
1100 }
|
cannam@154
|
1101 }
|
cannam@154
|
1102 }
|
cannam@154
|
1103 }
|
cannam@154
|
1104
|
cannam@154
|
1105 return cm;
|
cannam@154
|
1106 }
|
cannam@154
|
1107
|
cannam@154
|
1108
|
cannam@154
|
1109 /* This function is responsible for encoding and decoding a band for the mono case. */
|
cannam@154
|
1110 static unsigned quant_band(struct band_ctx *ctx, celt_norm *X,
|
cannam@154
|
1111 int N, int b, int B, celt_norm *lowband,
|
cannam@154
|
1112 int LM, celt_norm *lowband_out,
|
cannam@154
|
1113 opus_val16 gain, celt_norm *lowband_scratch, int fill)
|
cannam@154
|
1114 {
|
cannam@154
|
1115 int N0=N;
|
cannam@154
|
1116 int N_B=N;
|
cannam@154
|
1117 int N_B0;
|
cannam@154
|
1118 int B0=B;
|
cannam@154
|
1119 int time_divide=0;
|
cannam@154
|
1120 int recombine=0;
|
cannam@154
|
1121 int longBlocks;
|
cannam@154
|
1122 unsigned cm=0;
|
cannam@154
|
1123 int k;
|
cannam@154
|
1124 int encode;
|
cannam@154
|
1125 int tf_change;
|
cannam@154
|
1126
|
cannam@154
|
1127 encode = ctx->encode;
|
cannam@154
|
1128 tf_change = ctx->tf_change;
|
cannam@154
|
1129
|
cannam@154
|
1130 longBlocks = B0==1;
|
cannam@154
|
1131
|
cannam@154
|
1132 N_B = celt_udiv(N_B, B);
|
cannam@154
|
1133
|
cannam@154
|
1134 /* Special case for one sample */
|
cannam@154
|
1135 if (N==1)
|
cannam@154
|
1136 {
|
cannam@154
|
1137 return quant_band_n1(ctx, X, NULL, b, lowband_out);
|
cannam@154
|
1138 }
|
cannam@154
|
1139
|
cannam@154
|
1140 if (tf_change>0)
|
cannam@154
|
1141 recombine = tf_change;
|
cannam@154
|
1142 /* Band recombining to increase frequency resolution */
|
cannam@154
|
1143
|
cannam@154
|
1144 if (lowband_scratch && lowband && (recombine || ((N_B&1) == 0 && tf_change<0) || B0>1))
|
cannam@154
|
1145 {
|
cannam@154
|
1146 OPUS_COPY(lowband_scratch, lowband, N);
|
cannam@154
|
1147 lowband = lowband_scratch;
|
cannam@154
|
1148 }
|
cannam@154
|
1149
|
cannam@154
|
1150 for (k=0;k<recombine;k++)
|
cannam@154
|
1151 {
|
cannam@154
|
1152 static const unsigned char bit_interleave_table[16]={
|
cannam@154
|
1153 0,1,1,1,2,3,3,3,2,3,3,3,2,3,3,3
|
cannam@154
|
1154 };
|
cannam@154
|
1155 if (encode)
|
cannam@154
|
1156 haar1(X, N>>k, 1<<k);
|
cannam@154
|
1157 if (lowband)
|
cannam@154
|
1158 haar1(lowband, N>>k, 1<<k);
|
cannam@154
|
1159 fill = bit_interleave_table[fill&0xF]|bit_interleave_table[fill>>4]<<2;
|
cannam@154
|
1160 }
|
cannam@154
|
1161 B>>=recombine;
|
cannam@154
|
1162 N_B<<=recombine;
|
cannam@154
|
1163
|
cannam@154
|
1164 /* Increasing the time resolution */
|
cannam@154
|
1165 while ((N_B&1) == 0 && tf_change<0)
|
cannam@154
|
1166 {
|
cannam@154
|
1167 if (encode)
|
cannam@154
|
1168 haar1(X, N_B, B);
|
cannam@154
|
1169 if (lowband)
|
cannam@154
|
1170 haar1(lowband, N_B, B);
|
cannam@154
|
1171 fill |= fill<<B;
|
cannam@154
|
1172 B <<= 1;
|
cannam@154
|
1173 N_B >>= 1;
|
cannam@154
|
1174 time_divide++;
|
cannam@154
|
1175 tf_change++;
|
cannam@154
|
1176 }
|
cannam@154
|
1177 B0=B;
|
cannam@154
|
1178 N_B0 = N_B;
|
cannam@154
|
1179
|
cannam@154
|
1180 /* Reorganize the samples in time order instead of frequency order */
|
cannam@154
|
1181 if (B0>1)
|
cannam@154
|
1182 {
|
cannam@154
|
1183 if (encode)
|
cannam@154
|
1184 deinterleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks);
|
cannam@154
|
1185 if (lowband)
|
cannam@154
|
1186 deinterleave_hadamard(lowband, N_B>>recombine, B0<<recombine, longBlocks);
|
cannam@154
|
1187 }
|
cannam@154
|
1188
|
cannam@154
|
1189 cm = quant_partition(ctx, X, N, b, B, lowband, LM, gain, fill);
|
cannam@154
|
1190
|
cannam@154
|
1191 /* This code is used by the decoder and by the resynthesis-enabled encoder */
|
cannam@154
|
1192 if (ctx->resynth)
|
cannam@154
|
1193 {
|
cannam@154
|
1194 /* Undo the sample reorganization going from time order to frequency order */
|
cannam@154
|
1195 if (B0>1)
|
cannam@154
|
1196 interleave_hadamard(X, N_B>>recombine, B0<<recombine, longBlocks);
|
cannam@154
|
1197
|
cannam@154
|
1198 /* Undo time-freq changes that we did earlier */
|
cannam@154
|
1199 N_B = N_B0;
|
cannam@154
|
1200 B = B0;
|
cannam@154
|
1201 for (k=0;k<time_divide;k++)
|
cannam@154
|
1202 {
|
cannam@154
|
1203 B >>= 1;
|
cannam@154
|
1204 N_B <<= 1;
|
cannam@154
|
1205 cm |= cm>>B;
|
cannam@154
|
1206 haar1(X, N_B, B);
|
cannam@154
|
1207 }
|
cannam@154
|
1208
|
cannam@154
|
1209 for (k=0;k<recombine;k++)
|
cannam@154
|
1210 {
|
cannam@154
|
1211 static const unsigned char bit_deinterleave_table[16]={
|
cannam@154
|
1212 0x00,0x03,0x0C,0x0F,0x30,0x33,0x3C,0x3F,
|
cannam@154
|
1213 0xC0,0xC3,0xCC,0xCF,0xF0,0xF3,0xFC,0xFF
|
cannam@154
|
1214 };
|
cannam@154
|
1215 cm = bit_deinterleave_table[cm];
|
cannam@154
|
1216 haar1(X, N0>>k, 1<<k);
|
cannam@154
|
1217 }
|
cannam@154
|
1218 B<<=recombine;
|
cannam@154
|
1219
|
cannam@154
|
1220 /* Scale output for later folding */
|
cannam@154
|
1221 if (lowband_out)
|
cannam@154
|
1222 {
|
cannam@154
|
1223 int j;
|
cannam@154
|
1224 opus_val16 n;
|
cannam@154
|
1225 n = celt_sqrt(SHL32(EXTEND32(N0),22));
|
cannam@154
|
1226 for (j=0;j<N0;j++)
|
cannam@154
|
1227 lowband_out[j] = MULT16_16_Q15(n,X[j]);
|
cannam@154
|
1228 }
|
cannam@154
|
1229 cm &= (1<<B)-1;
|
cannam@154
|
1230 }
|
cannam@154
|
1231 return cm;
|
cannam@154
|
1232 }
|
cannam@154
|
1233
|
cannam@154
|
1234
|
cannam@154
|
1235 /* This function is responsible for encoding and decoding a band for the stereo case. */
|
cannam@154
|
1236 static unsigned quant_band_stereo(struct band_ctx *ctx, celt_norm *X, celt_norm *Y,
|
cannam@154
|
1237 int N, int b, int B, celt_norm *lowband,
|
cannam@154
|
1238 int LM, celt_norm *lowband_out,
|
cannam@154
|
1239 celt_norm *lowband_scratch, int fill)
|
cannam@154
|
1240 {
|
cannam@154
|
1241 int imid=0, iside=0;
|
cannam@154
|
1242 int inv = 0;
|
cannam@154
|
1243 opus_val16 mid=0, side=0;
|
cannam@154
|
1244 unsigned cm=0;
|
cannam@154
|
1245 int mbits, sbits, delta;
|
cannam@154
|
1246 int itheta;
|
cannam@154
|
1247 int qalloc;
|
cannam@154
|
1248 struct split_ctx sctx;
|
cannam@154
|
1249 int orig_fill;
|
cannam@154
|
1250 int encode;
|
cannam@154
|
1251 ec_ctx *ec;
|
cannam@154
|
1252
|
cannam@154
|
1253 encode = ctx->encode;
|
cannam@154
|
1254 ec = ctx->ec;
|
cannam@154
|
1255
|
cannam@154
|
1256 /* Special case for one sample */
|
cannam@154
|
1257 if (N==1)
|
cannam@154
|
1258 {
|
cannam@154
|
1259 return quant_band_n1(ctx, X, Y, b, lowband_out);
|
cannam@154
|
1260 }
|
cannam@154
|
1261
|
cannam@154
|
1262 orig_fill = fill;
|
cannam@154
|
1263
|
cannam@154
|
1264 compute_theta(ctx, &sctx, X, Y, N, &b, B, B, LM, 1, &fill);
|
cannam@154
|
1265 inv = sctx.inv;
|
cannam@154
|
1266 imid = sctx.imid;
|
cannam@154
|
1267 iside = sctx.iside;
|
cannam@154
|
1268 delta = sctx.delta;
|
cannam@154
|
1269 itheta = sctx.itheta;
|
cannam@154
|
1270 qalloc = sctx.qalloc;
|
cannam@154
|
1271 #ifdef FIXED_POINT
|
cannam@154
|
1272 mid = imid;
|
cannam@154
|
1273 side = iside;
|
cannam@154
|
1274 #else
|
cannam@154
|
1275 mid = (1.f/32768)*imid;
|
cannam@154
|
1276 side = (1.f/32768)*iside;
|
cannam@154
|
1277 #endif
|
cannam@154
|
1278
|
cannam@154
|
1279 /* This is a special case for N=2 that only works for stereo and takes
|
cannam@154
|
1280 advantage of the fact that mid and side are orthogonal to encode
|
cannam@154
|
1281 the side with just one bit. */
|
cannam@154
|
1282 if (N==2)
|
cannam@154
|
1283 {
|
cannam@154
|
1284 int c;
|
cannam@154
|
1285 int sign=0;
|
cannam@154
|
1286 celt_norm *x2, *y2;
|
cannam@154
|
1287 mbits = b;
|
cannam@154
|
1288 sbits = 0;
|
cannam@154
|
1289 /* Only need one bit for the side. */
|
cannam@154
|
1290 if (itheta != 0 && itheta != 16384)
|
cannam@154
|
1291 sbits = 1<<BITRES;
|
cannam@154
|
1292 mbits -= sbits;
|
cannam@154
|
1293 c = itheta > 8192;
|
cannam@154
|
1294 ctx->remaining_bits -= qalloc+sbits;
|
cannam@154
|
1295
|
cannam@154
|
1296 x2 = c ? Y : X;
|
cannam@154
|
1297 y2 = c ? X : Y;
|
cannam@154
|
1298 if (sbits)
|
cannam@154
|
1299 {
|
cannam@154
|
1300 if (encode)
|
cannam@154
|
1301 {
|
cannam@154
|
1302 /* Here we only need to encode a sign for the side. */
|
cannam@154
|
1303 sign = x2[0]*y2[1] - x2[1]*y2[0] < 0;
|
cannam@154
|
1304 ec_enc_bits(ec, sign, 1);
|
cannam@154
|
1305 } else {
|
cannam@154
|
1306 sign = ec_dec_bits(ec, 1);
|
cannam@154
|
1307 }
|
cannam@154
|
1308 }
|
cannam@154
|
1309 sign = 1-2*sign;
|
cannam@154
|
1310 /* We use orig_fill here because we want to fold the side, but if
|
cannam@154
|
1311 itheta==16384, we'll have cleared the low bits of fill. */
|
cannam@154
|
1312 cm = quant_band(ctx, x2, N, mbits, B, lowband, LM, lowband_out, Q15ONE,
|
cannam@154
|
1313 lowband_scratch, orig_fill);
|
cannam@154
|
1314 /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
|
cannam@154
|
1315 and there's no need to worry about mixing with the other channel. */
|
cannam@154
|
1316 y2[0] = -sign*x2[1];
|
cannam@154
|
1317 y2[1] = sign*x2[0];
|
cannam@154
|
1318 if (ctx->resynth)
|
cannam@154
|
1319 {
|
cannam@154
|
1320 celt_norm tmp;
|
cannam@154
|
1321 X[0] = MULT16_16_Q15(mid, X[0]);
|
cannam@154
|
1322 X[1] = MULT16_16_Q15(mid, X[1]);
|
cannam@154
|
1323 Y[0] = MULT16_16_Q15(side, Y[0]);
|
cannam@154
|
1324 Y[1] = MULT16_16_Q15(side, Y[1]);
|
cannam@154
|
1325 tmp = X[0];
|
cannam@154
|
1326 X[0] = SUB16(tmp,Y[0]);
|
cannam@154
|
1327 Y[0] = ADD16(tmp,Y[0]);
|
cannam@154
|
1328 tmp = X[1];
|
cannam@154
|
1329 X[1] = SUB16(tmp,Y[1]);
|
cannam@154
|
1330 Y[1] = ADD16(tmp,Y[1]);
|
cannam@154
|
1331 }
|
cannam@154
|
1332 } else {
|
cannam@154
|
1333 /* "Normal" split code */
|
cannam@154
|
1334 opus_int32 rebalance;
|
cannam@154
|
1335
|
cannam@154
|
1336 mbits = IMAX(0, IMIN(b, (b-delta)/2));
|
cannam@154
|
1337 sbits = b-mbits;
|
cannam@154
|
1338 ctx->remaining_bits -= qalloc;
|
cannam@154
|
1339
|
cannam@154
|
1340 rebalance = ctx->remaining_bits;
|
cannam@154
|
1341 if (mbits >= sbits)
|
cannam@154
|
1342 {
|
cannam@154
|
1343 /* In stereo mode, we do not apply a scaling to the mid because we need the normalized
|
cannam@154
|
1344 mid for folding later. */
|
cannam@154
|
1345 cm = quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q15ONE,
|
cannam@154
|
1346 lowband_scratch, fill);
|
cannam@154
|
1347 rebalance = mbits - (rebalance-ctx->remaining_bits);
|
cannam@154
|
1348 if (rebalance > 3<<BITRES && itheta!=0)
|
cannam@154
|
1349 sbits += rebalance - (3<<BITRES);
|
cannam@154
|
1350
|
cannam@154
|
1351 /* For a stereo split, the high bits of fill are always zero, so no
|
cannam@154
|
1352 folding will be done to the side. */
|
cannam@154
|
1353 cm |= quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B);
|
cannam@154
|
1354 } else {
|
cannam@154
|
1355 /* For a stereo split, the high bits of fill are always zero, so no
|
cannam@154
|
1356 folding will be done to the side. */
|
cannam@154
|
1357 cm = quant_band(ctx, Y, N, sbits, B, NULL, LM, NULL, side, NULL, fill>>B);
|
cannam@154
|
1358 rebalance = sbits - (rebalance-ctx->remaining_bits);
|
cannam@154
|
1359 if (rebalance > 3<<BITRES && itheta!=16384)
|
cannam@154
|
1360 mbits += rebalance - (3<<BITRES);
|
cannam@154
|
1361 /* In stereo mode, we do not apply a scaling to the mid because we need the normalized
|
cannam@154
|
1362 mid for folding later. */
|
cannam@154
|
1363 cm |= quant_band(ctx, X, N, mbits, B, lowband, LM, lowband_out, Q15ONE,
|
cannam@154
|
1364 lowband_scratch, fill);
|
cannam@154
|
1365 }
|
cannam@154
|
1366 }
|
cannam@154
|
1367
|
cannam@154
|
1368
|
cannam@154
|
1369 /* This code is used by the decoder and by the resynthesis-enabled encoder */
|
cannam@154
|
1370 if (ctx->resynth)
|
cannam@154
|
1371 {
|
cannam@154
|
1372 if (N!=2)
|
cannam@154
|
1373 stereo_merge(X, Y, mid, N, ctx->arch);
|
cannam@154
|
1374 if (inv)
|
cannam@154
|
1375 {
|
cannam@154
|
1376 int j;
|
cannam@154
|
1377 for (j=0;j<N;j++)
|
cannam@154
|
1378 Y[j] = -Y[j];
|
cannam@154
|
1379 }
|
cannam@154
|
1380 }
|
cannam@154
|
1381 return cm;
|
cannam@154
|
1382 }
|
cannam@154
|
1383
|
cannam@154
|
1384 static void special_hybrid_folding(const CELTMode *m, celt_norm *norm, celt_norm *norm2, int start, int M, int dual_stereo)
|
cannam@154
|
1385 {
|
cannam@154
|
1386 int n1, n2;
|
cannam@154
|
1387 const opus_int16 * OPUS_RESTRICT eBands = m->eBands;
|
cannam@154
|
1388 n1 = M*(eBands[start+1]-eBands[start]);
|
cannam@154
|
1389 n2 = M*(eBands[start+2]-eBands[start+1]);
|
cannam@154
|
1390 /* Duplicate enough of the first band folding data to be able to fold the second band.
|
cannam@154
|
1391 Copies no data for CELT-only mode. */
|
cannam@154
|
1392 OPUS_COPY(&norm[n1], &norm[2*n1 - n2], n2-n1);
|
cannam@154
|
1393 if (dual_stereo)
|
cannam@154
|
1394 OPUS_COPY(&norm2[n1], &norm2[2*n1 - n2], n2-n1);
|
cannam@154
|
1395 }
|
cannam@154
|
1396
|
cannam@154
|
1397 void quant_all_bands(int encode, const CELTMode *m, int start, int end,
|
cannam@154
|
1398 celt_norm *X_, celt_norm *Y_, unsigned char *collapse_masks,
|
cannam@154
|
1399 const celt_ener *bandE, int *pulses, int shortBlocks, int spread,
|
cannam@154
|
1400 int dual_stereo, int intensity, int *tf_res, opus_int32 total_bits,
|
cannam@154
|
1401 opus_int32 balance, ec_ctx *ec, int LM, int codedBands,
|
cannam@154
|
1402 opus_uint32 *seed, int complexity, int arch, int disable_inv)
|
cannam@154
|
1403 {
|
cannam@154
|
1404 int i;
|
cannam@154
|
1405 opus_int32 remaining_bits;
|
cannam@154
|
1406 const opus_int16 * OPUS_RESTRICT eBands = m->eBands;
|
cannam@154
|
1407 celt_norm * OPUS_RESTRICT norm, * OPUS_RESTRICT norm2;
|
cannam@154
|
1408 VARDECL(celt_norm, _norm);
|
cannam@154
|
1409 VARDECL(celt_norm, _lowband_scratch);
|
cannam@154
|
1410 VARDECL(celt_norm, X_save);
|
cannam@154
|
1411 VARDECL(celt_norm, Y_save);
|
cannam@154
|
1412 VARDECL(celt_norm, X_save2);
|
cannam@154
|
1413 VARDECL(celt_norm, Y_save2);
|
cannam@154
|
1414 VARDECL(celt_norm, norm_save2);
|
cannam@154
|
1415 int resynth_alloc;
|
cannam@154
|
1416 celt_norm *lowband_scratch;
|
cannam@154
|
1417 int B;
|
cannam@154
|
1418 int M;
|
cannam@154
|
1419 int lowband_offset;
|
cannam@154
|
1420 int update_lowband = 1;
|
cannam@154
|
1421 int C = Y_ != NULL ? 2 : 1;
|
cannam@154
|
1422 int norm_offset;
|
cannam@154
|
1423 int theta_rdo = encode && Y_!=NULL && !dual_stereo && complexity>=8;
|
cannam@154
|
1424 #ifdef RESYNTH
|
cannam@154
|
1425 int resynth = 1;
|
cannam@154
|
1426 #else
|
cannam@154
|
1427 int resynth = !encode || theta_rdo;
|
cannam@154
|
1428 #endif
|
cannam@154
|
1429 struct band_ctx ctx;
|
cannam@154
|
1430 SAVE_STACK;
|
cannam@154
|
1431
|
cannam@154
|
1432 M = 1<<LM;
|
cannam@154
|
1433 B = shortBlocks ? M : 1;
|
cannam@154
|
1434 norm_offset = M*eBands[start];
|
cannam@154
|
1435 /* No need to allocate norm for the last band because we don't need an
|
cannam@154
|
1436 output in that band. */
|
cannam@154
|
1437 ALLOC(_norm, C*(M*eBands[m->nbEBands-1]-norm_offset), celt_norm);
|
cannam@154
|
1438 norm = _norm;
|
cannam@154
|
1439 norm2 = norm + M*eBands[m->nbEBands-1]-norm_offset;
|
cannam@154
|
1440
|
cannam@154
|
1441 /* For decoding, we can use the last band as scratch space because we don't need that
|
cannam@154
|
1442 scratch space for the last band and we don't care about the data there until we're
|
cannam@154
|
1443 decoding the last band. */
|
cannam@154
|
1444 if (encode && resynth)
|
cannam@154
|
1445 resynth_alloc = M*(eBands[m->nbEBands]-eBands[m->nbEBands-1]);
|
cannam@154
|
1446 else
|
cannam@154
|
1447 resynth_alloc = ALLOC_NONE;
|
cannam@154
|
1448 ALLOC(_lowband_scratch, resynth_alloc, celt_norm);
|
cannam@154
|
1449 if (encode && resynth)
|
cannam@154
|
1450 lowband_scratch = _lowband_scratch;
|
cannam@154
|
1451 else
|
cannam@154
|
1452 lowband_scratch = X_+M*eBands[m->nbEBands-1];
|
cannam@154
|
1453 ALLOC(X_save, resynth_alloc, celt_norm);
|
cannam@154
|
1454 ALLOC(Y_save, resynth_alloc, celt_norm);
|
cannam@154
|
1455 ALLOC(X_save2, resynth_alloc, celt_norm);
|
cannam@154
|
1456 ALLOC(Y_save2, resynth_alloc, celt_norm);
|
cannam@154
|
1457 ALLOC(norm_save2, resynth_alloc, celt_norm);
|
cannam@154
|
1458
|
cannam@154
|
1459 lowband_offset = 0;
|
cannam@154
|
1460 ctx.bandE = bandE;
|
cannam@154
|
1461 ctx.ec = ec;
|
cannam@154
|
1462 ctx.encode = encode;
|
cannam@154
|
1463 ctx.intensity = intensity;
|
cannam@154
|
1464 ctx.m = m;
|
cannam@154
|
1465 ctx.seed = *seed;
|
cannam@154
|
1466 ctx.spread = spread;
|
cannam@154
|
1467 ctx.arch = arch;
|
cannam@154
|
1468 ctx.disable_inv = disable_inv;
|
cannam@154
|
1469 ctx.resynth = resynth;
|
cannam@154
|
1470 ctx.theta_round = 0;
|
cannam@154
|
1471 /* Avoid injecting noise in the first band on transients. */
|
cannam@154
|
1472 ctx.avoid_split_noise = B > 1;
|
cannam@154
|
1473 for (i=start;i<end;i++)
|
cannam@154
|
1474 {
|
cannam@154
|
1475 opus_int32 tell;
|
cannam@154
|
1476 int b;
|
cannam@154
|
1477 int N;
|
cannam@154
|
1478 opus_int32 curr_balance;
|
cannam@154
|
1479 int effective_lowband=-1;
|
cannam@154
|
1480 celt_norm * OPUS_RESTRICT X, * OPUS_RESTRICT Y;
|
cannam@154
|
1481 int tf_change=0;
|
cannam@154
|
1482 unsigned x_cm;
|
cannam@154
|
1483 unsigned y_cm;
|
cannam@154
|
1484 int last;
|
cannam@154
|
1485
|
cannam@154
|
1486 ctx.i = i;
|
cannam@154
|
1487 last = (i==end-1);
|
cannam@154
|
1488
|
cannam@154
|
1489 X = X_+M*eBands[i];
|
cannam@154
|
1490 if (Y_!=NULL)
|
cannam@154
|
1491 Y = Y_+M*eBands[i];
|
cannam@154
|
1492 else
|
cannam@154
|
1493 Y = NULL;
|
cannam@154
|
1494 N = M*eBands[i+1]-M*eBands[i];
|
cannam@154
|
1495 celt_assert(N > 0);
|
cannam@154
|
1496 tell = ec_tell_frac(ec);
|
cannam@154
|
1497
|
cannam@154
|
1498 /* Compute how many bits we want to allocate to this band */
|
cannam@154
|
1499 if (i != start)
|
cannam@154
|
1500 balance -= tell;
|
cannam@154
|
1501 remaining_bits = total_bits-tell-1;
|
cannam@154
|
1502 ctx.remaining_bits = remaining_bits;
|
cannam@154
|
1503 if (i <= codedBands-1)
|
cannam@154
|
1504 {
|
cannam@154
|
1505 curr_balance = celt_sudiv(balance, IMIN(3, codedBands-i));
|
cannam@154
|
1506 b = IMAX(0, IMIN(16383, IMIN(remaining_bits+1,pulses[i]+curr_balance)));
|
cannam@154
|
1507 } else {
|
cannam@154
|
1508 b = 0;
|
cannam@154
|
1509 }
|
cannam@154
|
1510
|
cannam@154
|
1511 #ifndef DISABLE_UPDATE_DRAFT
|
cannam@154
|
1512 if (resynth && (M*eBands[i]-N >= M*eBands[start] || i==start+1) && (update_lowband || lowband_offset==0))
|
cannam@154
|
1513 lowband_offset = i;
|
cannam@154
|
1514 if (i == start+1)
|
cannam@154
|
1515 special_hybrid_folding(m, norm, norm2, start, M, dual_stereo);
|
cannam@154
|
1516 #else
|
cannam@154
|
1517 if (resynth && M*eBands[i]-N >= M*eBands[start] && (update_lowband || lowband_offset==0))
|
cannam@154
|
1518 lowband_offset = i;
|
cannam@154
|
1519 #endif
|
cannam@154
|
1520
|
cannam@154
|
1521 tf_change = tf_res[i];
|
cannam@154
|
1522 ctx.tf_change = tf_change;
|
cannam@154
|
1523 if (i>=m->effEBands)
|
cannam@154
|
1524 {
|
cannam@154
|
1525 X=norm;
|
cannam@154
|
1526 if (Y_!=NULL)
|
cannam@154
|
1527 Y = norm;
|
cannam@154
|
1528 lowband_scratch = NULL;
|
cannam@154
|
1529 }
|
cannam@154
|
1530 if (last && !theta_rdo)
|
cannam@154
|
1531 lowband_scratch = NULL;
|
cannam@154
|
1532
|
cannam@154
|
1533 /* Get a conservative estimate of the collapse_mask's for the bands we're
|
cannam@154
|
1534 going to be folding from. */
|
cannam@154
|
1535 if (lowband_offset != 0 && (spread!=SPREAD_AGGRESSIVE || B>1 || tf_change<0))
|
cannam@154
|
1536 {
|
cannam@154
|
1537 int fold_start;
|
cannam@154
|
1538 int fold_end;
|
cannam@154
|
1539 int fold_i;
|
cannam@154
|
1540 /* This ensures we never repeat spectral content within one band */
|
cannam@154
|
1541 effective_lowband = IMAX(0, M*eBands[lowband_offset]-norm_offset-N);
|
cannam@154
|
1542 fold_start = lowband_offset;
|
cannam@154
|
1543 while(M*eBands[--fold_start] > effective_lowband+norm_offset);
|
cannam@154
|
1544 fold_end = lowband_offset-1;
|
cannam@154
|
1545 #ifndef DISABLE_UPDATE_DRAFT
|
cannam@154
|
1546 while(++fold_end < i && M*eBands[fold_end] < effective_lowband+norm_offset+N);
|
cannam@154
|
1547 #else
|
cannam@154
|
1548 while(M*eBands[++fold_end] < effective_lowband+norm_offset+N);
|
cannam@154
|
1549 #endif
|
cannam@154
|
1550 x_cm = y_cm = 0;
|
cannam@154
|
1551 fold_i = fold_start; do {
|
cannam@154
|
1552 x_cm |= collapse_masks[fold_i*C+0];
|
cannam@154
|
1553 y_cm |= collapse_masks[fold_i*C+C-1];
|
cannam@154
|
1554 } while (++fold_i<fold_end);
|
cannam@154
|
1555 }
|
cannam@154
|
1556 /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost
|
cannam@154
|
1557 always) be non-zero. */
|
cannam@154
|
1558 else
|
cannam@154
|
1559 x_cm = y_cm = (1<<B)-1;
|
cannam@154
|
1560
|
cannam@154
|
1561 if (dual_stereo && i==intensity)
|
cannam@154
|
1562 {
|
cannam@154
|
1563 int j;
|
cannam@154
|
1564
|
cannam@154
|
1565 /* Switch off dual stereo to do intensity. */
|
cannam@154
|
1566 dual_stereo = 0;
|
cannam@154
|
1567 if (resynth)
|
cannam@154
|
1568 for (j=0;j<M*eBands[i]-norm_offset;j++)
|
cannam@154
|
1569 norm[j] = HALF32(norm[j]+norm2[j]);
|
cannam@154
|
1570 }
|
cannam@154
|
1571 if (dual_stereo)
|
cannam@154
|
1572 {
|
cannam@154
|
1573 x_cm = quant_band(&ctx, X, N, b/2, B,
|
cannam@154
|
1574 effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
|
cannam@154
|
1575 last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm);
|
cannam@154
|
1576 y_cm = quant_band(&ctx, Y, N, b/2, B,
|
cannam@154
|
1577 effective_lowband != -1 ? norm2+effective_lowband : NULL, LM,
|
cannam@154
|
1578 last?NULL:norm2+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, y_cm);
|
cannam@154
|
1579 } else {
|
cannam@154
|
1580 if (Y!=NULL)
|
cannam@154
|
1581 {
|
cannam@154
|
1582 if (theta_rdo && i < intensity)
|
cannam@154
|
1583 {
|
cannam@154
|
1584 ec_ctx ec_save, ec_save2;
|
cannam@154
|
1585 struct band_ctx ctx_save, ctx_save2;
|
cannam@154
|
1586 opus_val32 dist0, dist1;
|
cannam@154
|
1587 unsigned cm, cm2;
|
cannam@154
|
1588 int nstart_bytes, nend_bytes, save_bytes;
|
cannam@154
|
1589 unsigned char *bytes_buf;
|
cannam@154
|
1590 unsigned char bytes_save[1275];
|
cannam@154
|
1591 opus_val16 w[2];
|
cannam@154
|
1592 compute_channel_weights(bandE[i], bandE[i+m->nbEBands], w);
|
cannam@154
|
1593 /* Make a copy. */
|
cannam@154
|
1594 cm = x_cm|y_cm;
|
cannam@154
|
1595 ec_save = *ec;
|
cannam@154
|
1596 ctx_save = ctx;
|
cannam@154
|
1597 OPUS_COPY(X_save, X, N);
|
cannam@154
|
1598 OPUS_COPY(Y_save, Y, N);
|
cannam@154
|
1599 /* Encode and round down. */
|
cannam@154
|
1600 ctx.theta_round = -1;
|
cannam@154
|
1601 x_cm = quant_band_stereo(&ctx, X, Y, N, b, B,
|
cannam@154
|
1602 effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
|
cannam@154
|
1603 last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm);
|
cannam@154
|
1604 dist0 = MULT16_32_Q15(w[0], celt_inner_prod(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod(Y_save, Y, N, arch));
|
cannam@154
|
1605
|
cannam@154
|
1606 /* Save first result. */
|
cannam@154
|
1607 cm2 = x_cm;
|
cannam@154
|
1608 ec_save2 = *ec;
|
cannam@154
|
1609 ctx_save2 = ctx;
|
cannam@154
|
1610 OPUS_COPY(X_save2, X, N);
|
cannam@154
|
1611 OPUS_COPY(Y_save2, Y, N);
|
cannam@154
|
1612 if (!last)
|
cannam@154
|
1613 OPUS_COPY(norm_save2, norm+M*eBands[i]-norm_offset, N);
|
cannam@154
|
1614 nstart_bytes = ec_save.offs;
|
cannam@154
|
1615 nend_bytes = ec_save.storage;
|
cannam@154
|
1616 bytes_buf = ec_save.buf+nstart_bytes;
|
cannam@154
|
1617 save_bytes = nend_bytes-nstart_bytes;
|
cannam@154
|
1618 OPUS_COPY(bytes_save, bytes_buf, save_bytes);
|
cannam@154
|
1619
|
cannam@154
|
1620 /* Restore */
|
cannam@154
|
1621 *ec = ec_save;
|
cannam@154
|
1622 ctx = ctx_save;
|
cannam@154
|
1623 OPUS_COPY(X, X_save, N);
|
cannam@154
|
1624 OPUS_COPY(Y, Y_save, N);
|
cannam@154
|
1625 #ifndef DISABLE_UPDATE_DRAFT
|
cannam@154
|
1626 if (i == start+1)
|
cannam@154
|
1627 special_hybrid_folding(m, norm, norm2, start, M, dual_stereo);
|
cannam@154
|
1628 #endif
|
cannam@154
|
1629 /* Encode and round up. */
|
cannam@154
|
1630 ctx.theta_round = 1;
|
cannam@154
|
1631 x_cm = quant_band_stereo(&ctx, X, Y, N, b, B,
|
cannam@154
|
1632 effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
|
cannam@154
|
1633 last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, cm);
|
cannam@154
|
1634 dist1 = MULT16_32_Q15(w[0], celt_inner_prod(X_save, X, N, arch)) + MULT16_32_Q15(w[1], celt_inner_prod(Y_save, Y, N, arch));
|
cannam@154
|
1635 if (dist0 >= dist1) {
|
cannam@154
|
1636 x_cm = cm2;
|
cannam@154
|
1637 *ec = ec_save2;
|
cannam@154
|
1638 ctx = ctx_save2;
|
cannam@154
|
1639 OPUS_COPY(X, X_save2, N);
|
cannam@154
|
1640 OPUS_COPY(Y, Y_save2, N);
|
cannam@154
|
1641 if (!last)
|
cannam@154
|
1642 OPUS_COPY(norm+M*eBands[i]-norm_offset, norm_save2, N);
|
cannam@154
|
1643 OPUS_COPY(bytes_buf, bytes_save, save_bytes);
|
cannam@154
|
1644 }
|
cannam@154
|
1645 } else {
|
cannam@154
|
1646 ctx.theta_round = 0;
|
cannam@154
|
1647 x_cm = quant_band_stereo(&ctx, X, Y, N, b, B,
|
cannam@154
|
1648 effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
|
cannam@154
|
1649 last?NULL:norm+M*eBands[i]-norm_offset, lowband_scratch, x_cm|y_cm);
|
cannam@154
|
1650 }
|
cannam@154
|
1651 } else {
|
cannam@154
|
1652 x_cm = quant_band(&ctx, X, N, b, B,
|
cannam@154
|
1653 effective_lowband != -1 ? norm+effective_lowband : NULL, LM,
|
cannam@154
|
1654 last?NULL:norm+M*eBands[i]-norm_offset, Q15ONE, lowband_scratch, x_cm|y_cm);
|
cannam@154
|
1655 }
|
cannam@154
|
1656 y_cm = x_cm;
|
cannam@154
|
1657 }
|
cannam@154
|
1658 collapse_masks[i*C+0] = (unsigned char)x_cm;
|
cannam@154
|
1659 collapse_masks[i*C+C-1] = (unsigned char)y_cm;
|
cannam@154
|
1660 balance += pulses[i] + tell;
|
cannam@154
|
1661
|
cannam@154
|
1662 /* Update the folding position only as long as we have 1 bit/sample depth. */
|
cannam@154
|
1663 update_lowband = b>(N<<BITRES);
|
cannam@154
|
1664 /* We only need to avoid noise on a split for the first band. After that, we
|
cannam@154
|
1665 have folding. */
|
cannam@154
|
1666 ctx.avoid_split_noise = 0;
|
cannam@154
|
1667 }
|
cannam@154
|
1668 *seed = ctx.seed;
|
cannam@154
|
1669
|
cannam@154
|
1670 RESTORE_STACK;
|
cannam@154
|
1671 }
|
cannam@154
|
1672
|