cannam@49
|
1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
|
cannam@49
|
2 // Licensed under the MIT License:
|
cannam@49
|
3 //
|
cannam@49
|
4 // Permission is hereby granted, free of charge, to any person obtaining a copy
|
cannam@49
|
5 // of this software and associated documentation files (the "Software"), to deal
|
cannam@49
|
6 // in the Software without restriction, including without limitation the rights
|
cannam@49
|
7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
cannam@49
|
8 // copies of the Software, and to permit persons to whom the Software is
|
cannam@49
|
9 // furnished to do so, subject to the following conditions:
|
cannam@49
|
10 //
|
cannam@49
|
11 // The above copyright notice and this permission notice shall be included in
|
cannam@49
|
12 // all copies or substantial portions of the Software.
|
cannam@49
|
13 //
|
cannam@49
|
14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
cannam@49
|
15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
cannam@49
|
16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
cannam@49
|
17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
cannam@49
|
18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
cannam@49
|
19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
cannam@49
|
20 // THE SOFTWARE.
|
cannam@49
|
21
|
cannam@49
|
22 // This file contains types which are intended to help detect incorrect usage at compile
|
cannam@49
|
23 // time, but should then be optimized down to basic primitives (usually, integers) by the
|
cannam@49
|
24 // compiler.
|
cannam@49
|
25
|
cannam@49
|
26 #ifndef KJ_UNITS_H_
|
cannam@49
|
27 #define KJ_UNITS_H_
|
cannam@49
|
28
|
cannam@49
|
29 #if defined(__GNUC__) && !KJ_HEADER_WARNINGS
|
cannam@49
|
30 #pragma GCC system_header
|
cannam@49
|
31 #endif
|
cannam@49
|
32
|
cannam@49
|
33 #include "common.h"
|
cannam@49
|
34
|
cannam@49
|
35 namespace kj {
|
cannam@49
|
36
|
cannam@49
|
37 // =======================================================================================
|
cannam@49
|
38 // IDs
|
cannam@49
|
39
|
cannam@49
|
40 template <typename UnderlyingType, typename Label>
|
cannam@49
|
41 struct Id {
|
cannam@49
|
42 // A type-safe numeric ID. `UnderlyingType` is the underlying integer representation. `Label`
|
cannam@49
|
43 // distinguishes this Id from other Id types. Sample usage:
|
cannam@49
|
44 //
|
cannam@49
|
45 // class Foo;
|
cannam@49
|
46 // typedef Id<uint, Foo> FooId;
|
cannam@49
|
47 //
|
cannam@49
|
48 // class Bar;
|
cannam@49
|
49 // typedef Id<uint, Bar> BarId;
|
cannam@49
|
50 //
|
cannam@49
|
51 // You can now use the FooId and BarId types without any possibility of accidentally using a
|
cannam@49
|
52 // FooId when you really wanted a BarId or vice-versa.
|
cannam@49
|
53
|
cannam@49
|
54 UnderlyingType value;
|
cannam@49
|
55
|
cannam@49
|
56 inline constexpr Id(): value(0) {}
|
cannam@49
|
57 inline constexpr explicit Id(int value): value(value) {}
|
cannam@49
|
58
|
cannam@49
|
59 inline constexpr bool operator==(const Id& other) const { return value == other.value; }
|
cannam@49
|
60 inline constexpr bool operator!=(const Id& other) const { return value != other.value; }
|
cannam@49
|
61 inline constexpr bool operator<=(const Id& other) const { return value <= other.value; }
|
cannam@49
|
62 inline constexpr bool operator>=(const Id& other) const { return value >= other.value; }
|
cannam@49
|
63 inline constexpr bool operator< (const Id& other) const { return value < other.value; }
|
cannam@49
|
64 inline constexpr bool operator> (const Id& other) const { return value > other.value; }
|
cannam@49
|
65 };
|
cannam@49
|
66
|
cannam@49
|
67 // =======================================================================================
|
cannam@49
|
68 // Quantity and UnitRatio -- implement unit analysis via the type system
|
cannam@49
|
69
|
cannam@49
|
70 template <typename T> constexpr bool isIntegral() { return false; }
|
cannam@49
|
71 template <> constexpr bool isIntegral<char>() { return true; }
|
cannam@49
|
72 template <> constexpr bool isIntegral<signed char>() { return true; }
|
cannam@49
|
73 template <> constexpr bool isIntegral<short>() { return true; }
|
cannam@49
|
74 template <> constexpr bool isIntegral<int>() { return true; }
|
cannam@49
|
75 template <> constexpr bool isIntegral<long>() { return true; }
|
cannam@49
|
76 template <> constexpr bool isIntegral<long long>() { return true; }
|
cannam@49
|
77 template <> constexpr bool isIntegral<unsigned char>() { return true; }
|
cannam@49
|
78 template <> constexpr bool isIntegral<unsigned short>() { return true; }
|
cannam@49
|
79 template <> constexpr bool isIntegral<unsigned int>() { return true; }
|
cannam@49
|
80 template <> constexpr bool isIntegral<unsigned long>() { return true; }
|
cannam@49
|
81 template <> constexpr bool isIntegral<unsigned long long>() { return true; }
|
cannam@49
|
82
|
cannam@49
|
83 template <typename Number, typename Unit1, typename Unit2>
|
cannam@49
|
84 class UnitRatio {
|
cannam@49
|
85 // A multiplier used to convert Quantities of one unit to Quantities of another unit. See
|
cannam@49
|
86 // Quantity, below.
|
cannam@49
|
87 //
|
cannam@49
|
88 // Construct this type by dividing one Quantity by another of a different unit. Use this type
|
cannam@49
|
89 // by multiplying it by a Quantity, or dividing a Quantity by it.
|
cannam@49
|
90
|
cannam@49
|
91 static_assert(isIntegral<Number>(), "Underlying type for UnitRatio must be integer.");
|
cannam@49
|
92
|
cannam@49
|
93 public:
|
cannam@49
|
94 inline UnitRatio() {}
|
cannam@49
|
95
|
cannam@49
|
96 constexpr explicit UnitRatio(Number unit1PerUnit2): unit1PerUnit2(unit1PerUnit2) {}
|
cannam@49
|
97 // This constructor was intended to be private, but GCC complains about it being private in a
|
cannam@49
|
98 // bunch of places that don't appear to even call it, so I made it public. Oh well.
|
cannam@49
|
99
|
cannam@49
|
100 template <typename OtherNumber>
|
cannam@49
|
101 inline constexpr UnitRatio(const UnitRatio<OtherNumber, Unit1, Unit2>& other)
|
cannam@49
|
102 : unit1PerUnit2(other.unit1PerUnit2) {}
|
cannam@49
|
103
|
cannam@49
|
104 template <typename OtherNumber>
|
cannam@49
|
105 inline constexpr UnitRatio<decltype(Number(1)+OtherNumber(1)), Unit1, Unit2>
|
cannam@49
|
106 operator+(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
|
cannam@49
|
107 return UnitRatio<decltype(Number(1)+OtherNumber(1)), Unit1, Unit2>(
|
cannam@49
|
108 unit1PerUnit2 + other.unit1PerUnit2);
|
cannam@49
|
109 }
|
cannam@49
|
110 template <typename OtherNumber>
|
cannam@49
|
111 inline constexpr UnitRatio<decltype(Number(1)-OtherNumber(1)), Unit1, Unit2>
|
cannam@49
|
112 operator-(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
|
cannam@49
|
113 return UnitRatio<decltype(Number(1)-OtherNumber(1)), Unit1, Unit2>(
|
cannam@49
|
114 unit1PerUnit2 - other.unit1PerUnit2);
|
cannam@49
|
115 }
|
cannam@49
|
116
|
cannam@49
|
117 template <typename OtherNumber, typename Unit3>
|
cannam@49
|
118 inline constexpr UnitRatio<decltype(Number(1)*OtherNumber(1)), Unit3, Unit2>
|
cannam@49
|
119 operator*(UnitRatio<OtherNumber, Unit3, Unit1> other) const {
|
cannam@49
|
120 // U1 / U2 * U3 / U1 = U3 / U2
|
cannam@49
|
121 return UnitRatio<decltype(Number(1)*OtherNumber(1)), Unit3, Unit2>(
|
cannam@49
|
122 unit1PerUnit2 * other.unit1PerUnit2);
|
cannam@49
|
123 }
|
cannam@49
|
124 template <typename OtherNumber, typename Unit3>
|
cannam@49
|
125 inline constexpr UnitRatio<decltype(Number(1)*OtherNumber(1)), Unit1, Unit3>
|
cannam@49
|
126 operator*(UnitRatio<OtherNumber, Unit2, Unit3> other) const {
|
cannam@49
|
127 // U1 / U2 * U2 / U3 = U1 / U3
|
cannam@49
|
128 return UnitRatio<decltype(Number(1)*OtherNumber(1)), Unit1, Unit3>(
|
cannam@49
|
129 unit1PerUnit2 * other.unit1PerUnit2);
|
cannam@49
|
130 }
|
cannam@49
|
131
|
cannam@49
|
132 template <typename OtherNumber, typename Unit3>
|
cannam@49
|
133 inline constexpr UnitRatio<decltype(Number(1)*OtherNumber(1)), Unit3, Unit2>
|
cannam@49
|
134 operator/(UnitRatio<OtherNumber, Unit1, Unit3> other) const {
|
cannam@49
|
135 // (U1 / U2) / (U1 / U3) = U3 / U2
|
cannam@49
|
136 return UnitRatio<decltype(Number(1)*OtherNumber(1)), Unit3, Unit2>(
|
cannam@49
|
137 unit1PerUnit2 / other.unit1PerUnit2);
|
cannam@49
|
138 }
|
cannam@49
|
139 template <typename OtherNumber, typename Unit3>
|
cannam@49
|
140 inline constexpr UnitRatio<decltype(Number(1)*OtherNumber(1)), Unit1, Unit3>
|
cannam@49
|
141 operator/(UnitRatio<OtherNumber, Unit3, Unit2> other) const {
|
cannam@49
|
142 // (U1 / U2) / (U3 / U2) = U1 / U3
|
cannam@49
|
143 return UnitRatio<decltype(Number(1)*OtherNumber(1)), Unit1, Unit3>(
|
cannam@49
|
144 unit1PerUnit2 / other.unit1PerUnit2);
|
cannam@49
|
145 }
|
cannam@49
|
146
|
cannam@49
|
147 template <typename OtherNumber>
|
cannam@49
|
148 inline decltype(Number(1) / OtherNumber(1))
|
cannam@49
|
149 operator/(UnitRatio<OtherNumber, Unit1, Unit2> other) const {
|
cannam@49
|
150 return unit1PerUnit2 / other.unit1PerUnit2;
|
cannam@49
|
151 }
|
cannam@49
|
152
|
cannam@49
|
153 inline bool operator==(UnitRatio other) const { return unit1PerUnit2 == other.unit1PerUnit2; }
|
cannam@49
|
154 inline bool operator!=(UnitRatio other) const { return unit1PerUnit2 != other.unit1PerUnit2; }
|
cannam@49
|
155
|
cannam@49
|
156 private:
|
cannam@49
|
157 Number unit1PerUnit2;
|
cannam@49
|
158
|
cannam@49
|
159 template <typename OtherNumber, typename OtherUnit>
|
cannam@49
|
160 friend class Quantity;
|
cannam@49
|
161 template <typename OtherNumber, typename OtherUnit1, typename OtherUnit2>
|
cannam@49
|
162 friend class UnitRatio;
|
cannam@49
|
163
|
cannam@49
|
164 template <typename N1, typename N2, typename U1, typename U2>
|
cannam@49
|
165 friend inline constexpr UnitRatio<decltype(N1(1) * N2(1)), U1, U2>
|
cannam@49
|
166 operator*(N1, UnitRatio<N2, U1, U2>);
|
cannam@49
|
167 };
|
cannam@49
|
168
|
cannam@49
|
169 template <typename N1, typename N2, typename U1, typename U2>
|
cannam@49
|
170 inline constexpr UnitRatio<decltype(N1(1) * N2(1)), U1, U2>
|
cannam@49
|
171 operator*(N1 n, UnitRatio<N2, U1, U2> r) {
|
cannam@49
|
172 return UnitRatio<decltype(N1(1) * N2(1)), U1, U2>(n * r.unit1PerUnit2);
|
cannam@49
|
173 }
|
cannam@49
|
174
|
cannam@49
|
175 template <typename Number, typename Unit>
|
cannam@49
|
176 class Quantity {
|
cannam@49
|
177 // A type-safe numeric quantity, specified in terms of some unit. Two Quantities cannot be used
|
cannam@49
|
178 // in arithmetic unless they use the same unit. The `Unit` type parameter is only used to prevent
|
cannam@49
|
179 // accidental mixing of units; this type is never instantiated and can very well be incomplete.
|
cannam@49
|
180 // `Number` is the underlying primitive numeric type.
|
cannam@49
|
181 //
|
cannam@49
|
182 // Quantities support most basic arithmetic operators, intelligently handling units, and
|
cannam@49
|
183 // automatically casting the underlying type in the same way that the compiler would.
|
cannam@49
|
184 //
|
cannam@49
|
185 // To convert a primitive number to a Quantity, multiply it by unit<Quantity<N, U>>().
|
cannam@49
|
186 // To convert a Quantity to a primitive number, divide it by unit<Quantity<N, U>>().
|
cannam@49
|
187 // To convert a Quantity of one unit to another unit, multiply or divide by a UnitRatio.
|
cannam@49
|
188 //
|
cannam@49
|
189 // The Quantity class is not well-suited to hardcore physics as it does not allow multiplying
|
cannam@49
|
190 // one quantity by another. For example, multiplying meters by meters won't get you square
|
cannam@49
|
191 // meters; it will get you a compiler error. It would be interesting to see if template
|
cannam@49
|
192 // metaprogramming could properly deal with such things but this isn't needed for the present
|
cannam@49
|
193 // use case.
|
cannam@49
|
194 //
|
cannam@49
|
195 // Sample usage:
|
cannam@49
|
196 //
|
cannam@49
|
197 // class SecondsLabel;
|
cannam@49
|
198 // typedef Quantity<double, SecondsLabel> Seconds;
|
cannam@49
|
199 // constexpr Seconds SECONDS = unit<Seconds>();
|
cannam@49
|
200 //
|
cannam@49
|
201 // class MinutesLabel;
|
cannam@49
|
202 // typedef Quantity<double, MinutesLabel> Minutes;
|
cannam@49
|
203 // constexpr Minutes MINUTES = unit<Minutes>();
|
cannam@49
|
204 //
|
cannam@49
|
205 // constexpr UnitRatio<double, SecondsLabel, MinutesLabel> SECONDS_PER_MINUTE =
|
cannam@49
|
206 // 60 * SECONDS / MINUTES;
|
cannam@49
|
207 //
|
cannam@49
|
208 // void waitFor(Seconds seconds) {
|
cannam@49
|
209 // sleep(seconds / SECONDS);
|
cannam@49
|
210 // }
|
cannam@49
|
211 // void waitFor(Minutes minutes) {
|
cannam@49
|
212 // waitFor(minutes * SECONDS_PER_MINUTE);
|
cannam@49
|
213 // }
|
cannam@49
|
214 //
|
cannam@49
|
215 // void waitThreeMinutes() {
|
cannam@49
|
216 // waitFor(3 * MINUTES);
|
cannam@49
|
217 // }
|
cannam@49
|
218
|
cannam@49
|
219 static_assert(isIntegral<Number>(), "Underlying type for Quantity must be integer.");
|
cannam@49
|
220
|
cannam@49
|
221 public:
|
cannam@49
|
222 inline constexpr Quantity() {}
|
cannam@49
|
223
|
cannam@49
|
224 inline constexpr Quantity(MaxValue_): value(maxValue) {}
|
cannam@49
|
225 inline constexpr Quantity(MinValue_): value(minValue) {}
|
cannam@49
|
226 // Allow initialization from maxValue and minValue.
|
cannam@49
|
227 // TODO(msvc): decltype(maxValue) and decltype(minValue) deduce unknown-type for these function
|
cannam@49
|
228 // parameters, causing the compiler to complain of a duplicate constructor definition, so we
|
cannam@49
|
229 // specify MaxValue_ and MinValue_ types explicitly.
|
cannam@49
|
230
|
cannam@49
|
231 inline explicit constexpr Quantity(Number value): value(value) {}
|
cannam@49
|
232 // This constructor was intended to be private, but GCC complains about it being private in a
|
cannam@49
|
233 // bunch of places that don't appear to even call it, so I made it public. Oh well.
|
cannam@49
|
234
|
cannam@49
|
235 template <typename OtherNumber>
|
cannam@49
|
236 inline constexpr Quantity(const Quantity<OtherNumber, Unit>& other)
|
cannam@49
|
237 : value(other.value) {}
|
cannam@49
|
238
|
cannam@49
|
239 template <typename OtherNumber>
|
cannam@49
|
240 inline constexpr Quantity<decltype(Number(1) + OtherNumber(1)), Unit>
|
cannam@49
|
241 operator+(const Quantity<OtherNumber, Unit>& other) const {
|
cannam@49
|
242 return Quantity<decltype(Number(1) + OtherNumber(1)), Unit>(value + other.value);
|
cannam@49
|
243 }
|
cannam@49
|
244 template <typename OtherNumber>
|
cannam@49
|
245 inline constexpr Quantity<decltype(Number(1) - OtherNumber(1)), Unit>
|
cannam@49
|
246 operator-(const Quantity<OtherNumber, Unit>& other) const {
|
cannam@49
|
247 return Quantity<decltype(Number(1) - OtherNumber(1)), Unit>(value - other.value);
|
cannam@49
|
248 }
|
cannam@49
|
249 template <typename OtherNumber>
|
cannam@49
|
250 inline constexpr Quantity<decltype(Number(1) * OtherNumber(1)), Unit>
|
cannam@49
|
251 operator*(OtherNumber other) const {
|
cannam@49
|
252 static_assert(isIntegral<OtherNumber>(), "Multiplied Quantity by non-integer.");
|
cannam@49
|
253 return Quantity<decltype(Number(1) * other), Unit>(value * other);
|
cannam@49
|
254 }
|
cannam@49
|
255 template <typename OtherNumber>
|
cannam@49
|
256 inline constexpr Quantity<decltype(Number(1) / OtherNumber(1)), Unit>
|
cannam@49
|
257 operator/(OtherNumber other) const {
|
cannam@49
|
258 static_assert(isIntegral<OtherNumber>(), "Divided Quantity by non-integer.");
|
cannam@49
|
259 return Quantity<decltype(Number(1) / other), Unit>(value / other);
|
cannam@49
|
260 }
|
cannam@49
|
261 template <typename OtherNumber>
|
cannam@49
|
262 inline constexpr decltype(Number(1) / OtherNumber(1))
|
cannam@49
|
263 operator/(const Quantity<OtherNumber, Unit>& other) const {
|
cannam@49
|
264 return value / other.value;
|
cannam@49
|
265 }
|
cannam@49
|
266 template <typename OtherNumber>
|
cannam@49
|
267 inline constexpr decltype(Number(1) % OtherNumber(1))
|
cannam@49
|
268 operator%(const Quantity<OtherNumber, Unit>& other) const {
|
cannam@49
|
269 return value % other.value;
|
cannam@49
|
270 }
|
cannam@49
|
271
|
cannam@49
|
272 template <typename OtherNumber, typename OtherUnit>
|
cannam@49
|
273 inline constexpr Quantity<decltype(Number(1) * OtherNumber(1)), OtherUnit>
|
cannam@49
|
274 operator*(const UnitRatio<OtherNumber, OtherUnit, Unit>& ratio) const {
|
cannam@49
|
275 return Quantity<decltype(Number(1) * OtherNumber(1)), OtherUnit>(
|
cannam@49
|
276 value * ratio.unit1PerUnit2);
|
cannam@49
|
277 }
|
cannam@49
|
278 template <typename OtherNumber, typename OtherUnit>
|
cannam@49
|
279 inline constexpr Quantity<decltype(Number(1) / OtherNumber(1)), OtherUnit>
|
cannam@49
|
280 operator/(const UnitRatio<OtherNumber, Unit, OtherUnit>& ratio) const {
|
cannam@49
|
281 return Quantity<decltype(Number(1) / OtherNumber(1)), OtherUnit>(
|
cannam@49
|
282 value / ratio.unit1PerUnit2);
|
cannam@49
|
283 }
|
cannam@49
|
284 template <typename OtherNumber, typename OtherUnit>
|
cannam@49
|
285 inline constexpr Quantity<decltype(Number(1) % OtherNumber(1)), Unit>
|
cannam@49
|
286 operator%(const UnitRatio<OtherNumber, Unit, OtherUnit>& ratio) const {
|
cannam@49
|
287 return Quantity<decltype(Number(1) % OtherNumber(1)), Unit>(
|
cannam@49
|
288 value % ratio.unit1PerUnit2);
|
cannam@49
|
289 }
|
cannam@49
|
290 template <typename OtherNumber, typename OtherUnit>
|
cannam@49
|
291 inline constexpr UnitRatio<decltype(Number(1) / OtherNumber(1)), Unit, OtherUnit>
|
cannam@49
|
292 operator/(const Quantity<OtherNumber, OtherUnit>& other) const {
|
cannam@49
|
293 return UnitRatio<decltype(Number(1) / OtherNumber(1)), Unit, OtherUnit>(value / other.value);
|
cannam@49
|
294 }
|
cannam@49
|
295
|
cannam@49
|
296 template <typename OtherNumber>
|
cannam@49
|
297 inline constexpr bool operator==(const Quantity<OtherNumber, Unit>& other) const {
|
cannam@49
|
298 return value == other.value;
|
cannam@49
|
299 }
|
cannam@49
|
300 template <typename OtherNumber>
|
cannam@49
|
301 inline constexpr bool operator!=(const Quantity<OtherNumber, Unit>& other) const {
|
cannam@49
|
302 return value != other.value;
|
cannam@49
|
303 }
|
cannam@49
|
304 template <typename OtherNumber>
|
cannam@49
|
305 inline constexpr bool operator<=(const Quantity<OtherNumber, Unit>& other) const {
|
cannam@49
|
306 return value <= other.value;
|
cannam@49
|
307 }
|
cannam@49
|
308 template <typename OtherNumber>
|
cannam@49
|
309 inline constexpr bool operator>=(const Quantity<OtherNumber, Unit>& other) const {
|
cannam@49
|
310 return value >= other.value;
|
cannam@49
|
311 }
|
cannam@49
|
312 template <typename OtherNumber>
|
cannam@49
|
313 inline constexpr bool operator<(const Quantity<OtherNumber, Unit>& other) const {
|
cannam@49
|
314 return value < other.value;
|
cannam@49
|
315 }
|
cannam@49
|
316 template <typename OtherNumber>
|
cannam@49
|
317 inline constexpr bool operator>(const Quantity<OtherNumber, Unit>& other) const {
|
cannam@49
|
318 return value > other.value;
|
cannam@49
|
319 }
|
cannam@49
|
320
|
cannam@49
|
321 template <typename OtherNumber>
|
cannam@49
|
322 inline Quantity& operator+=(const Quantity<OtherNumber, Unit>& other) {
|
cannam@49
|
323 value += other.value;
|
cannam@49
|
324 return *this;
|
cannam@49
|
325 }
|
cannam@49
|
326 template <typename OtherNumber>
|
cannam@49
|
327 inline Quantity& operator-=(const Quantity<OtherNumber, Unit>& other) {
|
cannam@49
|
328 value -= other.value;
|
cannam@49
|
329 return *this;
|
cannam@49
|
330 }
|
cannam@49
|
331 template <typename OtherNumber>
|
cannam@49
|
332 inline Quantity& operator*=(OtherNumber other) {
|
cannam@49
|
333 value *= other;
|
cannam@49
|
334 return *this;
|
cannam@49
|
335 }
|
cannam@49
|
336 template <typename OtherNumber>
|
cannam@49
|
337 inline Quantity& operator/=(OtherNumber other) {
|
cannam@49
|
338 value /= other.value;
|
cannam@49
|
339 return *this;
|
cannam@49
|
340 }
|
cannam@49
|
341
|
cannam@49
|
342 private:
|
cannam@49
|
343 Number value;
|
cannam@49
|
344
|
cannam@49
|
345 template <typename OtherNumber, typename OtherUnit>
|
cannam@49
|
346 friend class Quantity;
|
cannam@49
|
347
|
cannam@49
|
348 template <typename Number1, typename Number2, typename Unit2>
|
cannam@49
|
349 friend inline constexpr auto operator*(Number1 a, Quantity<Number2, Unit2> b)
|
cannam@49
|
350 -> Quantity<decltype(Number1(1) * Number2(1)), Unit2>;
|
cannam@49
|
351
|
cannam@49
|
352 template <typename T>
|
cannam@49
|
353 friend inline constexpr T unit();
|
cannam@49
|
354 };
|
cannam@49
|
355
|
cannam@49
|
356 template <typename T>
|
cannam@49
|
357 inline constexpr T unit() { return T(1); }
|
cannam@49
|
358 // unit<Quantity<T, U>>() returns a Quantity of value 1. It also, intentionally, works on basic
|
cannam@49
|
359 // numeric types.
|
cannam@49
|
360
|
cannam@49
|
361 template <typename Number1, typename Number2, typename Unit>
|
cannam@49
|
362 inline constexpr auto operator*(Number1 a, Quantity<Number2, Unit> b)
|
cannam@49
|
363 -> Quantity<decltype(Number1(1) * Number2(1)), Unit> {
|
cannam@49
|
364 return Quantity<decltype(Number1(1) * Number2(1)), Unit>(a * b.value);
|
cannam@49
|
365 }
|
cannam@49
|
366
|
cannam@49
|
367 template <typename Number1, typename Number2, typename Unit, typename Unit2>
|
cannam@49
|
368 inline constexpr auto operator*(UnitRatio<Number1, Unit2, Unit> ratio,
|
cannam@49
|
369 Quantity<Number2, Unit> measure)
|
cannam@49
|
370 -> decltype(measure * ratio) {
|
cannam@49
|
371 return measure * ratio;
|
cannam@49
|
372 }
|
cannam@49
|
373
|
cannam@49
|
374 // =======================================================================================
|
cannam@49
|
375 // Absolute measures
|
cannam@49
|
376
|
cannam@49
|
377 template <typename T, typename Label>
|
cannam@49
|
378 class Absolute {
|
cannam@49
|
379 // Wraps some other value -- typically a Quantity -- but represents a value measured based on
|
cannam@49
|
380 // some absolute origin. For example, if `Duration` is a type representing a time duration,
|
cannam@49
|
381 // Absolute<Duration, UnixEpoch> might be a calendar date.
|
cannam@49
|
382 //
|
cannam@49
|
383 // Since Absolute represents measurements relative to some arbitrary origin, the only sensible
|
cannam@49
|
384 // arithmetic to perform on them is addition and subtraction.
|
cannam@49
|
385
|
cannam@49
|
386 // TODO(someday): Do the same automatic expansion of integer width that Quantity does? Doesn't
|
cannam@49
|
387 // matter for our time use case, where we always use 64-bit anyway. Note that fixing this
|
cannam@49
|
388 // would implicitly allow things like multiplying an Absolute by a UnitRatio to change its
|
cannam@49
|
389 // units, which is actually totally logical and kind of neat.
|
cannam@49
|
390
|
cannam@49
|
391 public:
|
cannam@49
|
392 inline constexpr Absolute operator+(const T& other) const { return Absolute(value + other); }
|
cannam@49
|
393 inline constexpr Absolute operator-(const T& other) const { return Absolute(value - other); }
|
cannam@49
|
394 inline constexpr T operator-(const Absolute& other) const { return value - other.value; }
|
cannam@49
|
395
|
cannam@49
|
396 inline Absolute& operator+=(const T& other) { value += other; return *this; }
|
cannam@49
|
397 inline Absolute& operator-=(const T& other) { value -= other; return *this; }
|
cannam@49
|
398
|
cannam@49
|
399 inline constexpr bool operator==(const Absolute& other) const { return value == other.value; }
|
cannam@49
|
400 inline constexpr bool operator!=(const Absolute& other) const { return value != other.value; }
|
cannam@49
|
401 inline constexpr bool operator<=(const Absolute& other) const { return value <= other.value; }
|
cannam@49
|
402 inline constexpr bool operator>=(const Absolute& other) const { return value >= other.value; }
|
cannam@49
|
403 inline constexpr bool operator< (const Absolute& other) const { return value < other.value; }
|
cannam@49
|
404 inline constexpr bool operator> (const Absolute& other) const { return value > other.value; }
|
cannam@49
|
405
|
cannam@49
|
406 private:
|
cannam@49
|
407 T value;
|
cannam@49
|
408
|
cannam@49
|
409 explicit constexpr Absolute(T value): value(value) {}
|
cannam@49
|
410
|
cannam@49
|
411 template <typename U>
|
cannam@49
|
412 friend inline constexpr U origin();
|
cannam@49
|
413 };
|
cannam@49
|
414
|
cannam@49
|
415 template <typename T, typename Label>
|
cannam@49
|
416 inline constexpr Absolute<T, Label> operator+(const T& a, const Absolute<T, Label>& b) {
|
cannam@49
|
417 return b + a;
|
cannam@49
|
418 }
|
cannam@49
|
419
|
cannam@49
|
420 template <typename T> struct UnitOf_ { typedef T Type; };
|
cannam@49
|
421 template <typename T, typename Label> struct UnitOf_<Absolute<T, Label>> { typedef T Type; };
|
cannam@49
|
422 template <typename T>
|
cannam@49
|
423 using UnitOf = typename UnitOf_<T>::Type;
|
cannam@49
|
424 // UnitOf<Absolute<T, U>> is T. UnitOf<AnythingElse> is AnythingElse.
|
cannam@49
|
425
|
cannam@49
|
426 template <typename T>
|
cannam@49
|
427 inline constexpr T origin() { return T(0 * unit<UnitOf<T>>()); }
|
cannam@49
|
428 // origin<Absolute<T, U>>() returns an Absolute of value 0. It also, intentionally, works on basic
|
cannam@49
|
429 // numeric types.
|
cannam@49
|
430
|
cannam@49
|
431 } // namespace kj
|
cannam@49
|
432
|
cannam@49
|
433 #endif // KJ_UNITS_H_
|