annotate win32-mingw/include/kj/function.h @ 135:38d1c0e7850b

Headers for KJ/Capnp Win32
author Chris Cannam <cannam@all-day-breakfast.com>
date Wed, 26 Oct 2016 13:18:45 +0100
parents
children eccd51b72864
rev   line source
cannam@135 1 // Copyright (c) 2013-2014 Sandstorm Development Group, Inc. and contributors
cannam@135 2 // Licensed under the MIT License:
cannam@135 3 //
cannam@135 4 // Permission is hereby granted, free of charge, to any person obtaining a copy
cannam@135 5 // of this software and associated documentation files (the "Software"), to deal
cannam@135 6 // in the Software without restriction, including without limitation the rights
cannam@135 7 // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
cannam@135 8 // copies of the Software, and to permit persons to whom the Software is
cannam@135 9 // furnished to do so, subject to the following conditions:
cannam@135 10 //
cannam@135 11 // The above copyright notice and this permission notice shall be included in
cannam@135 12 // all copies or substantial portions of the Software.
cannam@135 13 //
cannam@135 14 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
cannam@135 15 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
cannam@135 16 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
cannam@135 17 // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
cannam@135 18 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
cannam@135 19 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
cannam@135 20 // THE SOFTWARE.
cannam@135 21
cannam@135 22 #ifndef KJ_FUNCTION_H_
cannam@135 23 #define KJ_FUNCTION_H_
cannam@135 24
cannam@135 25 #if defined(__GNUC__) && !KJ_HEADER_WARNINGS
cannam@135 26 #pragma GCC system_header
cannam@135 27 #endif
cannam@135 28
cannam@135 29 #include "memory.h"
cannam@135 30
cannam@135 31 namespace kj {
cannam@135 32
cannam@135 33 template <typename Signature>
cannam@135 34 class Function;
cannam@135 35 // Function wrapper using virtual-based polymorphism. Use this when template polymorphism is
cannam@135 36 // not possible. You can, for example, accept a Function as a parameter:
cannam@135 37 //
cannam@135 38 // void setFilter(Function<bool(const Widget&)> filter);
cannam@135 39 //
cannam@135 40 // The caller of `setFilter()` may then pass any callable object as the parameter. The callable
cannam@135 41 // object does not have to have the exact signature specified, just one that is "compatible" --
cannam@135 42 // i.e. the return type is covariant and the parameters are contravariant.
cannam@135 43 //
cannam@135 44 // Unlike `std::function`, `kj::Function`s are movable but not copyable, just like `kj::Own`. This
cannam@135 45 // is to avoid unexpected heap allocation or slow atomic reference counting.
cannam@135 46 //
cannam@135 47 // When a `Function` is constructed from an lvalue, it captures only a reference to the value.
cannam@135 48 // When constructed from an rvalue, it invokes the value's move constructor. So, for example:
cannam@135 49 //
cannam@135 50 // struct AddN {
cannam@135 51 // int n;
cannam@135 52 // int operator(int i) { return i + n; }
cannam@135 53 // }
cannam@135 54 //
cannam@135 55 // Function<int(int, int)> f1 = AddN{2};
cannam@135 56 // // f1 owns an instance of AddN. It may safely be moved out
cannam@135 57 // // of the local scope.
cannam@135 58 //
cannam@135 59 // AddN adder(2);
cannam@135 60 // Function<int(int, int)> f2 = adder;
cannam@135 61 // // f2 contains a reference to `adder`. Thus, it becomes invalid
cannam@135 62 // // when `adder` goes out-of-scope.
cannam@135 63 //
cannam@135 64 // AddN adder2(2);
cannam@135 65 // Function<int(int, int)> f3 = kj::mv(adder2);
cannam@135 66 // // f3 owns an insatnce of AddN moved from `adder2`. f3 may safely
cannam@135 67 // // be moved out of the local scope.
cannam@135 68 //
cannam@135 69 // Additionally, a Function may be bound to a class method using KJ_BIND_METHOD(object, methodName).
cannam@135 70 // For example:
cannam@135 71 //
cannam@135 72 // class Printer {
cannam@135 73 // public:
cannam@135 74 // void print(int i);
cannam@135 75 // void print(kj::StringPtr s);
cannam@135 76 // };
cannam@135 77 //
cannam@135 78 // Printer p;
cannam@135 79 //
cannam@135 80 // Function<void(uint)> intPrinter = KJ_BIND_METHOD(p, print);
cannam@135 81 // // Will call Printer::print(int).
cannam@135 82 //
cannam@135 83 // Function<void(const char*)> strPrinter = KJ_BIND_METHOD(p, print);
cannam@135 84 // // Will call Printer::print(kj::StringPtr).
cannam@135 85 //
cannam@135 86 // Notice how KJ_BIND_METHOD is able to figure out which overload to use depending on the kind of
cannam@135 87 // Function it is binding to.
cannam@135 88
cannam@135 89 template <typename Signature>
cannam@135 90 class ConstFunction;
cannam@135 91 // Like Function, but wraps a "const" (i.e. thread-safe) call.
cannam@135 92
cannam@135 93 template <typename Return, typename... Params>
cannam@135 94 class Function<Return(Params...)> {
cannam@135 95 public:
cannam@135 96 template <typename F>
cannam@135 97 inline Function(F&& f): impl(heap<Impl<F>>(kj::fwd<F>(f))) {}
cannam@135 98 Function() = default;
cannam@135 99
cannam@135 100 // Make sure people don't accidentally end up wrapping a reference when they meant to return
cannam@135 101 // a function.
cannam@135 102 KJ_DISALLOW_COPY(Function);
cannam@135 103 Function(Function&) = delete;
cannam@135 104 Function& operator=(Function&) = delete;
cannam@135 105 template <typename T> Function(const Function<T>&) = delete;
cannam@135 106 template <typename T> Function& operator=(const Function<T>&) = delete;
cannam@135 107 template <typename T> Function(const ConstFunction<T>&) = delete;
cannam@135 108 template <typename T> Function& operator=(const ConstFunction<T>&) = delete;
cannam@135 109 Function(Function&&) = default;
cannam@135 110 Function& operator=(Function&&) = default;
cannam@135 111
cannam@135 112 inline Return operator()(Params... params) {
cannam@135 113 return (*impl)(kj::fwd<Params>(params)...);
cannam@135 114 }
cannam@135 115
cannam@135 116 Function reference() {
cannam@135 117 // Forms a new Function of the same type that delegates to this Function by reference.
cannam@135 118 // Therefore, this Function must outlive the returned Function, but otherwise they behave
cannam@135 119 // exactly the same.
cannam@135 120
cannam@135 121 return *impl;
cannam@135 122 }
cannam@135 123
cannam@135 124 private:
cannam@135 125 class Iface {
cannam@135 126 public:
cannam@135 127 virtual Return operator()(Params... params) = 0;
cannam@135 128 };
cannam@135 129
cannam@135 130 template <typename F>
cannam@135 131 class Impl final: public Iface {
cannam@135 132 public:
cannam@135 133 explicit Impl(F&& f): f(kj::fwd<F>(f)) {}
cannam@135 134
cannam@135 135 Return operator()(Params... params) override {
cannam@135 136 return f(kj::fwd<Params>(params)...);
cannam@135 137 }
cannam@135 138
cannam@135 139 private:
cannam@135 140 F f;
cannam@135 141 };
cannam@135 142
cannam@135 143 Own<Iface> impl;
cannam@135 144 };
cannam@135 145
cannam@135 146 template <typename Return, typename... Params>
cannam@135 147 class ConstFunction<Return(Params...)> {
cannam@135 148 public:
cannam@135 149 template <typename F>
cannam@135 150 inline ConstFunction(F&& f): impl(heap<Impl<F>>(kj::fwd<F>(f))) {}
cannam@135 151 ConstFunction() = default;
cannam@135 152
cannam@135 153 // Make sure people don't accidentally end up wrapping a reference when they meant to return
cannam@135 154 // a function.
cannam@135 155 KJ_DISALLOW_COPY(ConstFunction);
cannam@135 156 ConstFunction(ConstFunction&) = delete;
cannam@135 157 ConstFunction& operator=(ConstFunction&) = delete;
cannam@135 158 template <typename T> ConstFunction(const ConstFunction<T>&) = delete;
cannam@135 159 template <typename T> ConstFunction& operator=(const ConstFunction<T>&) = delete;
cannam@135 160 template <typename T> ConstFunction(const Function<T>&) = delete;
cannam@135 161 template <typename T> ConstFunction& operator=(const Function<T>&) = delete;
cannam@135 162 ConstFunction(ConstFunction&&) = default;
cannam@135 163 ConstFunction& operator=(ConstFunction&&) = default;
cannam@135 164
cannam@135 165 inline Return operator()(Params... params) const {
cannam@135 166 return (*impl)(kj::fwd<Params>(params)...);
cannam@135 167 }
cannam@135 168
cannam@135 169 ConstFunction reference() const {
cannam@135 170 // Forms a new ConstFunction of the same type that delegates to this ConstFunction by reference.
cannam@135 171 // Therefore, this ConstFunction must outlive the returned ConstFunction, but otherwise they
cannam@135 172 // behave exactly the same.
cannam@135 173
cannam@135 174 return *impl;
cannam@135 175 }
cannam@135 176
cannam@135 177 private:
cannam@135 178 class Iface {
cannam@135 179 public:
cannam@135 180 virtual Return operator()(Params... params) const = 0;
cannam@135 181 };
cannam@135 182
cannam@135 183 template <typename F>
cannam@135 184 class Impl final: public Iface {
cannam@135 185 public:
cannam@135 186 explicit Impl(F&& f): f(kj::fwd<F>(f)) {}
cannam@135 187
cannam@135 188 Return operator()(Params... params) const override {
cannam@135 189 return f(kj::fwd<Params>(params)...);
cannam@135 190 }
cannam@135 191
cannam@135 192 private:
cannam@135 193 F f;
cannam@135 194 };
cannam@135 195
cannam@135 196 Own<Iface> impl;
cannam@135 197 };
cannam@135 198
cannam@135 199 #if 1
cannam@135 200
cannam@135 201 namespace _ { // private
cannam@135 202
cannam@135 203 template <typename T, typename Signature, Signature method>
cannam@135 204 class BoundMethod;
cannam@135 205
cannam@135 206 template <typename T, typename Return, typename... Params, Return (Decay<T>::*method)(Params...)>
cannam@135 207 class BoundMethod<T, Return (Decay<T>::*)(Params...), method> {
cannam@135 208 public:
cannam@135 209 BoundMethod(T&& t): t(kj::fwd<T>(t)) {}
cannam@135 210
cannam@135 211 Return operator()(Params&&... params) {
cannam@135 212 return (t.*method)(kj::fwd<Params>(params)...);
cannam@135 213 }
cannam@135 214
cannam@135 215 private:
cannam@135 216 T t;
cannam@135 217 };
cannam@135 218
cannam@135 219 template <typename T, typename Return, typename... Params,
cannam@135 220 Return (Decay<T>::*method)(Params...) const>
cannam@135 221 class BoundMethod<T, Return (Decay<T>::*)(Params...) const, method> {
cannam@135 222 public:
cannam@135 223 BoundMethod(T&& t): t(kj::fwd<T>(t)) {}
cannam@135 224
cannam@135 225 Return operator()(Params&&... params) const {
cannam@135 226 return (t.*method)(kj::fwd<Params>(params)...);
cannam@135 227 }
cannam@135 228
cannam@135 229 private:
cannam@135 230 T t;
cannam@135 231 };
cannam@135 232
cannam@135 233 } // namespace _ (private)
cannam@135 234
cannam@135 235 #define KJ_BIND_METHOD(obj, method) \
cannam@135 236 ::kj::_::BoundMethod<KJ_DECLTYPE_REF(obj), \
cannam@135 237 decltype(&::kj::Decay<decltype(obj)>::method), \
cannam@135 238 &::kj::Decay<decltype(obj)>::method>(obj)
cannam@135 239 // Macro that produces a functor object which forwards to the method `obj.name`. If `obj` is an
cannam@135 240 // lvalue, the functor will hold a reference to it. If `obj` is an rvalue, the functor will
cannam@135 241 // contain a copy (by move) of it.
cannam@135 242 //
cannam@135 243 // The current implementation requires that the method is not overloaded.
cannam@135 244 //
cannam@135 245 // TODO(someday): C++14's generic lambdas may be able to simplify this code considerably, and
cannam@135 246 // probably make it work with overloaded methods.
cannam@135 247
cannam@135 248 #else
cannam@135 249 // Here's a better implementation of the above that doesn't work with GCC (but does with Clang)
cannam@135 250 // because it uses a local class with a template method. Sigh. This implementation supports
cannam@135 251 // overloaded methods.
cannam@135 252
cannam@135 253 #define KJ_BIND_METHOD(obj, method) \
cannam@135 254 ({ \
cannam@135 255 typedef KJ_DECLTYPE_REF(obj) T; \
cannam@135 256 class F { \
cannam@135 257 public: \
cannam@135 258 inline F(T&& t): t(::kj::fwd<T>(t)) {} \
cannam@135 259 template <typename... Params> \
cannam@135 260 auto operator()(Params&&... params) \
cannam@135 261 -> decltype(::kj::instance<T>().method(::kj::fwd<Params>(params)...)) { \
cannam@135 262 return t.method(::kj::fwd<Params>(params)...); \
cannam@135 263 } \
cannam@135 264 private: \
cannam@135 265 T t; \
cannam@135 266 }; \
cannam@135 267 (F(obj)); \
cannam@135 268 })
cannam@135 269 // Macro that produces a functor object which forwards to the method `obj.name`. If `obj` is an
cannam@135 270 // lvalue, the functor will hold a reference to it. If `obj` is an rvalue, the functor will
cannam@135 271 // contain a copy (by move) of it.
cannam@135 272
cannam@135 273 #endif
cannam@135 274
cannam@135 275 } // namespace kj
cannam@135 276
cannam@135 277 #endif // KJ_FUNCTION_H_