annotate src/fftw-3.3.3/rdft/rank0.c @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
rev   line source
Chris@10 1 /*
Chris@10 2 * Copyright (c) 2003, 2007-11 Matteo Frigo
Chris@10 3 * Copyright (c) 2003, 2007-11 Massachusetts Institute of Technology
Chris@10 4 *
Chris@10 5 * This program is free software; you can redistribute it and/or modify
Chris@10 6 * it under the terms of the GNU General Public License as published by
Chris@10 7 * the Free Software Foundation; either version 2 of the License, or
Chris@10 8 * (at your option) any later version.
Chris@10 9 *
Chris@10 10 * This program is distributed in the hope that it will be useful,
Chris@10 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@10 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@10 13 * GNU General Public License for more details.
Chris@10 14 *
Chris@10 15 * You should have received a copy of the GNU General Public License
Chris@10 16 * along with this program; if not, write to the Free Software
Chris@10 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@10 18 *
Chris@10 19 */
Chris@10 20
Chris@10 21
Chris@10 22 /* plans for rank-0 RDFTs (copy operations) */
Chris@10 23
Chris@10 24 #include "rdft.h"
Chris@10 25
Chris@10 26 #ifdef HAVE_STRING_H
Chris@10 27 #include <string.h> /* for memcpy() */
Chris@10 28 #endif
Chris@10 29
Chris@10 30 #define MAXRNK 32 /* FIXME: should malloc() */
Chris@10 31
Chris@10 32 typedef struct {
Chris@10 33 plan_rdft super;
Chris@10 34 INT vl;
Chris@10 35 int rnk;
Chris@10 36 iodim d[MAXRNK];
Chris@10 37 const char *nam;
Chris@10 38 } P;
Chris@10 39
Chris@10 40 typedef struct {
Chris@10 41 solver super;
Chris@10 42 rdftapply apply;
Chris@10 43 int (*applicable)(const P *pln, const problem_rdft *p);
Chris@10 44 const char *nam;
Chris@10 45 } S;
Chris@10 46
Chris@10 47 /* copy up to MAXRNK dimensions from problem into plan. If a
Chris@10 48 contiguous dimension exists, save its length in pln->vl */
Chris@10 49 static int fill_iodim(P *pln, const problem_rdft *p)
Chris@10 50 {
Chris@10 51 int i;
Chris@10 52 const tensor *vecsz = p->vecsz;
Chris@10 53
Chris@10 54 pln->vl = 1;
Chris@10 55 pln->rnk = 0;
Chris@10 56 for (i = 0; i < vecsz->rnk; ++i) {
Chris@10 57 /* extract contiguous dimensions */
Chris@10 58 if (pln->vl == 1 &&
Chris@10 59 vecsz->dims[i].is == 1 && vecsz->dims[i].os == 1)
Chris@10 60 pln->vl = vecsz->dims[i].n;
Chris@10 61 else if (pln->rnk == MAXRNK)
Chris@10 62 return 0;
Chris@10 63 else
Chris@10 64 pln->d[pln->rnk++] = vecsz->dims[i];
Chris@10 65 }
Chris@10 66
Chris@10 67 return 1;
Chris@10 68 }
Chris@10 69
Chris@10 70 /* generic higher-rank copy routine, calls cpy2d() to do the real work */
Chris@10 71 static void copy(const iodim *d, int rnk, INT vl,
Chris@10 72 R *I, R *O,
Chris@10 73 cpy2d_func cpy2d)
Chris@10 74 {
Chris@10 75 A(rnk >= 2);
Chris@10 76 if (rnk == 2)
Chris@10 77 cpy2d(I, O, d[0].n, d[0].is, d[0].os, d[1].n, d[1].is, d[1].os, vl);
Chris@10 78 else {
Chris@10 79 INT i;
Chris@10 80 for (i = 0; i < d[0].n; ++i, I += d[0].is, O += d[0].os)
Chris@10 81 copy(d + 1, rnk - 1, vl, I, O, cpy2d);
Chris@10 82 }
Chris@10 83 }
Chris@10 84
Chris@10 85 /* FIXME: should be more general */
Chris@10 86 static int transposep(const P *pln)
Chris@10 87 {
Chris@10 88 int i;
Chris@10 89
Chris@10 90 for (i = 0; i < pln->rnk - 2; ++i)
Chris@10 91 if (pln->d[i].is != pln->d[i].os)
Chris@10 92 return 0;
Chris@10 93
Chris@10 94 return (pln->d[i].n == pln->d[i+1].n &&
Chris@10 95 pln->d[i].is == pln->d[i+1].os &&
Chris@10 96 pln->d[i].os == pln->d[i+1].is);
Chris@10 97 }
Chris@10 98
Chris@10 99 /* generic higher-rank transpose routine, calls transpose2d() to do
Chris@10 100 * the real work */
Chris@10 101 static void transpose(const iodim *d, int rnk, INT vl,
Chris@10 102 R *I,
Chris@10 103 transpose_func transpose2d)
Chris@10 104 {
Chris@10 105 A(rnk >= 2);
Chris@10 106 if (rnk == 2)
Chris@10 107 transpose2d(I, d[0].n, d[0].is, d[0].os, vl);
Chris@10 108 else {
Chris@10 109 INT i;
Chris@10 110 for (i = 0; i < d[0].n; ++i, I += d[0].is)
Chris@10 111 transpose(d + 1, rnk - 1, vl, I, transpose2d);
Chris@10 112 }
Chris@10 113 }
Chris@10 114
Chris@10 115 /**************************************************************/
Chris@10 116 /* rank 0,1,2, out of place, iterative */
Chris@10 117 static void apply_iter(const plan *ego_, R *I, R *O)
Chris@10 118 {
Chris@10 119 const P *ego = (const P *) ego_;
Chris@10 120
Chris@10 121 switch (ego->rnk) {
Chris@10 122 case 0:
Chris@10 123 X(cpy1d)(I, O, ego->vl, 1, 1, 1);
Chris@10 124 break;
Chris@10 125 case 1:
Chris@10 126 X(cpy1d)(I, O,
Chris@10 127 ego->d[0].n, ego->d[0].is, ego->d[0].os,
Chris@10 128 ego->vl);
Chris@10 129 break;
Chris@10 130 default:
Chris@10 131 copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_ci));
Chris@10 132 break;
Chris@10 133 }
Chris@10 134 }
Chris@10 135
Chris@10 136 static int applicable_iter(const P *pln, const problem_rdft *p)
Chris@10 137 {
Chris@10 138 UNUSED(pln);
Chris@10 139 return (p->I != p->O);
Chris@10 140 }
Chris@10 141
Chris@10 142 /**************************************************************/
Chris@10 143 /* out of place, write contiguous output */
Chris@10 144 static void apply_cpy2dco(const plan *ego_, R *I, R *O)
Chris@10 145 {
Chris@10 146 const P *ego = (const P *) ego_;
Chris@10 147 copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_co));
Chris@10 148 }
Chris@10 149
Chris@10 150 static int applicable_cpy2dco(const P *pln, const problem_rdft *p)
Chris@10 151 {
Chris@10 152 int rnk = pln->rnk;
Chris@10 153 return (1
Chris@10 154 && p->I != p->O
Chris@10 155 && rnk >= 2
Chris@10 156
Chris@10 157 /* must not duplicate apply_iter */
Chris@10 158 && (X(iabs)(pln->d[rnk - 2].is) <= X(iabs)(pln->d[rnk - 1].is)
Chris@10 159 ||
Chris@10 160 X(iabs)(pln->d[rnk - 2].os) <= X(iabs)(pln->d[rnk - 1].os))
Chris@10 161 );
Chris@10 162 }
Chris@10 163
Chris@10 164 /**************************************************************/
Chris@10 165 /* out of place, tiled, no buffering */
Chris@10 166 static void apply_tiled(const plan *ego_, R *I, R *O)
Chris@10 167 {
Chris@10 168 const P *ego = (const P *) ego_;
Chris@10 169 copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_tiled));
Chris@10 170 }
Chris@10 171
Chris@10 172 static int applicable_tiled(const P *pln, const problem_rdft *p)
Chris@10 173 {
Chris@10 174 return (1
Chris@10 175 && p->I != p->O
Chris@10 176 && pln->rnk >= 2
Chris@10 177
Chris@10 178 /* somewhat arbitrary */
Chris@10 179 && X(compute_tilesz)(pln->vl, 1) > 4
Chris@10 180 );
Chris@10 181 }
Chris@10 182
Chris@10 183 /**************************************************************/
Chris@10 184 /* out of place, tiled, with buffer */
Chris@10 185 static void apply_tiledbuf(const plan *ego_, R *I, R *O)
Chris@10 186 {
Chris@10 187 const P *ego = (const P *) ego_;
Chris@10 188 copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_tiledbuf));
Chris@10 189 }
Chris@10 190
Chris@10 191 #define applicable_tiledbuf applicable_tiled
Chris@10 192
Chris@10 193 /**************************************************************/
Chris@10 194 /* rank 0, out of place, using memcpy */
Chris@10 195 static void apply_memcpy(const plan *ego_, R *I, R *O)
Chris@10 196 {
Chris@10 197 const P *ego = (const P *) ego_;
Chris@10 198
Chris@10 199 A(ego->rnk == 0);
Chris@10 200 memcpy(O, I, ego->vl * sizeof(R));
Chris@10 201 }
Chris@10 202
Chris@10 203 static int applicable_memcpy(const P *pln, const problem_rdft *p)
Chris@10 204 {
Chris@10 205 return (1
Chris@10 206 && p->I != p->O
Chris@10 207 && pln->rnk == 0
Chris@10 208 && pln->vl > 2 /* do not bother memcpy-ing complex numbers */
Chris@10 209 );
Chris@10 210 }
Chris@10 211
Chris@10 212 /**************************************************************/
Chris@10 213 /* rank > 0 vecloop, out of place, using memcpy (e.g. out-of-place
Chris@10 214 transposes of vl-tuples ... for large vl it should be more
Chris@10 215 efficient to use memcpy than the tiled stuff). */
Chris@10 216
Chris@10 217 static void memcpy_loop(INT cpysz, int rnk, const iodim *d, R *I, R *O)
Chris@10 218 {
Chris@10 219 INT i, n = d->n, is = d->is, os = d->os;
Chris@10 220 if (rnk == 1)
Chris@10 221 for (i = 0; i < n; ++i, I += is, O += os)
Chris@10 222 memcpy(O, I, cpysz);
Chris@10 223 else {
Chris@10 224 --rnk; ++d;
Chris@10 225 for (i = 0; i < n; ++i, I += is, O += os)
Chris@10 226 memcpy_loop(cpysz, rnk, d, I, O);
Chris@10 227 }
Chris@10 228 }
Chris@10 229
Chris@10 230 static void apply_memcpy_loop(const plan *ego_, R *I, R *O)
Chris@10 231 {
Chris@10 232 const P *ego = (const P *) ego_;
Chris@10 233 memcpy_loop(ego->vl * sizeof(R), ego->rnk, ego->d, I, O);
Chris@10 234 }
Chris@10 235
Chris@10 236 static int applicable_memcpy_loop(const P *pln, const problem_rdft *p)
Chris@10 237 {
Chris@10 238 return (p->I != p->O
Chris@10 239 && pln->rnk > 0
Chris@10 240 && pln->vl > 2 /* do not bother memcpy-ing complex numbers */);
Chris@10 241 }
Chris@10 242
Chris@10 243 /**************************************************************/
Chris@10 244 /* rank 2, in place, square transpose, iterative */
Chris@10 245 static void apply_ip_sq(const plan *ego_, R *I, R *O)
Chris@10 246 {
Chris@10 247 const P *ego = (const P *) ego_;
Chris@10 248 UNUSED(O);
Chris@10 249 transpose(ego->d, ego->rnk, ego->vl, I, X(transpose));
Chris@10 250 }
Chris@10 251
Chris@10 252
Chris@10 253 static int applicable_ip_sq(const P *pln, const problem_rdft *p)
Chris@10 254 {
Chris@10 255 return (1
Chris@10 256 && p->I == p->O
Chris@10 257 && pln->rnk >= 2
Chris@10 258 && transposep(pln));
Chris@10 259 }
Chris@10 260
Chris@10 261 /**************************************************************/
Chris@10 262 /* rank 2, in place, square transpose, tiled */
Chris@10 263 static void apply_ip_sq_tiled(const plan *ego_, R *I, R *O)
Chris@10 264 {
Chris@10 265 const P *ego = (const P *) ego_;
Chris@10 266 UNUSED(O);
Chris@10 267 transpose(ego->d, ego->rnk, ego->vl, I, X(transpose_tiled));
Chris@10 268 }
Chris@10 269
Chris@10 270 static int applicable_ip_sq_tiled(const P *pln, const problem_rdft *p)
Chris@10 271 {
Chris@10 272 return (1
Chris@10 273 && applicable_ip_sq(pln, p)
Chris@10 274
Chris@10 275 /* somewhat arbitrary */
Chris@10 276 && X(compute_tilesz)(pln->vl, 2) > 4
Chris@10 277 );
Chris@10 278 }
Chris@10 279
Chris@10 280 /**************************************************************/
Chris@10 281 /* rank 2, in place, square transpose, tiled, buffered */
Chris@10 282 static void apply_ip_sq_tiledbuf(const plan *ego_, R *I, R *O)
Chris@10 283 {
Chris@10 284 const P *ego = (const P *) ego_;
Chris@10 285 UNUSED(O);
Chris@10 286 transpose(ego->d, ego->rnk, ego->vl, I, X(transpose_tiledbuf));
Chris@10 287 }
Chris@10 288
Chris@10 289 #define applicable_ip_sq_tiledbuf applicable_ip_sq_tiled
Chris@10 290
Chris@10 291 /**************************************************************/
Chris@10 292 static int applicable(const S *ego, const problem *p_)
Chris@10 293 {
Chris@10 294 const problem_rdft *p = (const problem_rdft *) p_;
Chris@10 295 P pln;
Chris@10 296 return (1
Chris@10 297 && p->sz->rnk == 0
Chris@10 298 && FINITE_RNK(p->vecsz->rnk)
Chris@10 299 && fill_iodim(&pln, p)
Chris@10 300 && ego->applicable(&pln, p)
Chris@10 301 );
Chris@10 302 }
Chris@10 303
Chris@10 304 static void print(const plan *ego_, printer *p)
Chris@10 305 {
Chris@10 306 const P *ego = (const P *) ego_;
Chris@10 307 int i;
Chris@10 308 p->print(p, "(%s/%D", ego->nam, ego->vl);
Chris@10 309 for (i = 0; i < ego->rnk; ++i)
Chris@10 310 p->print(p, "%v", ego->d[i].n);
Chris@10 311 p->print(p, ")");
Chris@10 312 }
Chris@10 313
Chris@10 314 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@10 315 {
Chris@10 316 const problem_rdft *p;
Chris@10 317 const S *ego = (const S *) ego_;
Chris@10 318 P *pln;
Chris@10 319 int retval;
Chris@10 320
Chris@10 321 static const plan_adt padt = {
Chris@10 322 X(rdft_solve), X(null_awake), print, X(plan_null_destroy)
Chris@10 323 };
Chris@10 324
Chris@10 325 UNUSED(plnr);
Chris@10 326
Chris@10 327 if (!applicable(ego, p_))
Chris@10 328 return (plan *) 0;
Chris@10 329
Chris@10 330 p = (const problem_rdft *) p_;
Chris@10 331 pln = MKPLAN_RDFT(P, &padt, ego->apply);
Chris@10 332
Chris@10 333 retval = fill_iodim(pln, p);
Chris@10 334 (void)retval; /* UNUSED unless DEBUG */
Chris@10 335 A(retval);
Chris@10 336 A(pln->vl > 0); /* because FINITE_RNK(p->vecsz->rnk) holds */
Chris@10 337 pln->nam = ego->nam;
Chris@10 338
Chris@10 339 /* X(tensor_sz)(p->vecsz) loads, X(tensor_sz)(p->vecsz) stores */
Chris@10 340 X(ops_other)(2 * X(tensor_sz)(p->vecsz), &pln->super.super.ops);
Chris@10 341 return &(pln->super.super);
Chris@10 342 }
Chris@10 343
Chris@10 344
Chris@10 345 void X(rdft_rank0_register)(planner *p)
Chris@10 346 {
Chris@10 347 unsigned i;
Chris@10 348 static struct {
Chris@10 349 rdftapply apply;
Chris@10 350 int (*applicable)(const P *, const problem_rdft *);
Chris@10 351 const char *nam;
Chris@10 352 } tab[] = {
Chris@10 353 { apply_memcpy, applicable_memcpy, "rdft-rank0-memcpy" },
Chris@10 354 { apply_memcpy_loop, applicable_memcpy_loop,
Chris@10 355 "rdft-rank0-memcpy-loop" },
Chris@10 356 { apply_iter, applicable_iter, "rdft-rank0-iter-ci" },
Chris@10 357 { apply_cpy2dco, applicable_cpy2dco, "rdft-rank0-iter-co" },
Chris@10 358 { apply_tiled, applicable_tiled, "rdft-rank0-tiled" },
Chris@10 359 { apply_tiledbuf, applicable_tiledbuf, "rdft-rank0-tiledbuf" },
Chris@10 360 { apply_ip_sq, applicable_ip_sq, "rdft-rank0-ip-sq" },
Chris@10 361 {
Chris@10 362 apply_ip_sq_tiled,
Chris@10 363 applicable_ip_sq_tiled,
Chris@10 364 "rdft-rank0-ip-sq-tiled"
Chris@10 365 },
Chris@10 366 {
Chris@10 367 apply_ip_sq_tiledbuf,
Chris@10 368 applicable_ip_sq_tiledbuf,
Chris@10 369 "rdft-rank0-ip-sq-tiledbuf"
Chris@10 370 },
Chris@10 371 };
Chris@10 372
Chris@10 373 for (i = 0; i < sizeof(tab) / sizeof(tab[0]); ++i) {
Chris@10 374 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@10 375 S *slv = MKSOLVER(S, &sadt);
Chris@10 376 slv->apply = tab[i].apply;
Chris@10 377 slv->applicable = tab[i].applicable;
Chris@10 378 slv->nam = tab[i].nam;
Chris@10 379 REGISTER_SOLVER(p, &(slv->super));
Chris@10 380 }
Chris@10 381 }