Chris@10
|
1 <html lang="en">
|
Chris@10
|
2 <head>
|
Chris@10
|
3 <title>2d MPI example - FFTW 3.3.3</title>
|
Chris@10
|
4 <meta http-equiv="Content-Type" content="text/html">
|
Chris@10
|
5 <meta name="description" content="FFTW 3.3.3">
|
Chris@10
|
6 <meta name="generator" content="makeinfo 4.13">
|
Chris@10
|
7 <link title="Top" rel="start" href="index.html#Top">
|
Chris@10
|
8 <link rel="up" href="Distributed_002dmemory-FFTW-with-MPI.html#Distributed_002dmemory-FFTW-with-MPI" title="Distributed-memory FFTW with MPI">
|
Chris@10
|
9 <link rel="prev" href="Linking-and-Initializing-MPI-FFTW.html#Linking-and-Initializing-MPI-FFTW" title="Linking and Initializing MPI FFTW">
|
Chris@10
|
10 <link rel="next" href="MPI-Data-Distribution.html#MPI-Data-Distribution" title="MPI Data Distribution">
|
Chris@10
|
11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
|
Chris@10
|
12 <!--
|
Chris@10
|
13 This manual is for FFTW
|
Chris@10
|
14 (version 3.3.3, 25 November 2012).
|
Chris@10
|
15
|
Chris@10
|
16 Copyright (C) 2003 Matteo Frigo.
|
Chris@10
|
17
|
Chris@10
|
18 Copyright (C) 2003 Massachusetts Institute of Technology.
|
Chris@10
|
19
|
Chris@10
|
20 Permission is granted to make and distribute verbatim copies of
|
Chris@10
|
21 this manual provided the copyright notice and this permission
|
Chris@10
|
22 notice are preserved on all copies.
|
Chris@10
|
23
|
Chris@10
|
24 Permission is granted to copy and distribute modified versions of
|
Chris@10
|
25 this manual under the conditions for verbatim copying, provided
|
Chris@10
|
26 that the entire resulting derived work is distributed under the
|
Chris@10
|
27 terms of a permission notice identical to this one.
|
Chris@10
|
28
|
Chris@10
|
29 Permission is granted to copy and distribute translations of this
|
Chris@10
|
30 manual into another language, under the above conditions for
|
Chris@10
|
31 modified versions, except that this permission notice may be
|
Chris@10
|
32 stated in a translation approved by the Free Software Foundation.
|
Chris@10
|
33 -->
|
Chris@10
|
34 <meta http-equiv="Content-Style-Type" content="text/css">
|
Chris@10
|
35 <style type="text/css"><!--
|
Chris@10
|
36 pre.display { font-family:inherit }
|
Chris@10
|
37 pre.format { font-family:inherit }
|
Chris@10
|
38 pre.smalldisplay { font-family:inherit; font-size:smaller }
|
Chris@10
|
39 pre.smallformat { font-family:inherit; font-size:smaller }
|
Chris@10
|
40 pre.smallexample { font-size:smaller }
|
Chris@10
|
41 pre.smalllisp { font-size:smaller }
|
Chris@10
|
42 span.sc { font-variant:small-caps }
|
Chris@10
|
43 span.roman { font-family:serif; font-weight:normal; }
|
Chris@10
|
44 span.sansserif { font-family:sans-serif; font-weight:normal; }
|
Chris@10
|
45 --></style>
|
Chris@10
|
46 </head>
|
Chris@10
|
47 <body>
|
Chris@10
|
48 <div class="node">
|
Chris@10
|
49 <a name="g_t2d-MPI-example"></a>
|
Chris@10
|
50 <p>
|
Chris@10
|
51 Next: <a rel="next" accesskey="n" href="MPI-Data-Distribution.html#MPI-Data-Distribution">MPI Data Distribution</a>,
|
Chris@10
|
52 Previous: <a rel="previous" accesskey="p" href="Linking-and-Initializing-MPI-FFTW.html#Linking-and-Initializing-MPI-FFTW">Linking and Initializing MPI FFTW</a>,
|
Chris@10
|
53 Up: <a rel="up" accesskey="u" href="Distributed_002dmemory-FFTW-with-MPI.html#Distributed_002dmemory-FFTW-with-MPI">Distributed-memory FFTW with MPI</a>
|
Chris@10
|
54 <hr>
|
Chris@10
|
55 </div>
|
Chris@10
|
56
|
Chris@10
|
57 <h3 class="section">6.3 2d MPI example</h3>
|
Chris@10
|
58
|
Chris@10
|
59 <p>Before we document the FFTW MPI interface in detail, we begin with a
|
Chris@10
|
60 simple example outlining how one would perform a two-dimensional
|
Chris@10
|
61 <code>N0</code> by <code>N1</code> complex DFT.
|
Chris@10
|
62
|
Chris@10
|
63 <pre class="example"> #include <fftw3-mpi.h>
|
Chris@10
|
64
|
Chris@10
|
65 int main(int argc, char **argv)
|
Chris@10
|
66 {
|
Chris@10
|
67 const ptrdiff_t N0 = ..., N1 = ...;
|
Chris@10
|
68 fftw_plan plan;
|
Chris@10
|
69 fftw_complex *data;
|
Chris@10
|
70 ptrdiff_t alloc_local, local_n0, local_0_start, i, j;
|
Chris@10
|
71
|
Chris@10
|
72 MPI_Init(&argc, &argv);
|
Chris@10
|
73 fftw_mpi_init();
|
Chris@10
|
74
|
Chris@10
|
75 /* <span class="roman">get local data size and allocate</span> */
|
Chris@10
|
76 alloc_local = fftw_mpi_local_size_2d(N0, N1, MPI_COMM_WORLD,
|
Chris@10
|
77 &local_n0, &local_0_start);
|
Chris@10
|
78 data = fftw_alloc_complex(alloc_local);
|
Chris@10
|
79
|
Chris@10
|
80 /* <span class="roman">create plan for in-place forward DFT</span> */
|
Chris@10
|
81 plan = fftw_mpi_plan_dft_2d(N0, N1, data, data, MPI_COMM_WORLD,
|
Chris@10
|
82 FFTW_FORWARD, FFTW_ESTIMATE);
|
Chris@10
|
83
|
Chris@10
|
84 /* <span class="roman">initialize data to some function</span> my_function(x,y) */
|
Chris@10
|
85 for (i = 0; i < local_n0; ++i) for (j = 0; j < N1; ++j)
|
Chris@10
|
86 data[i*N1 + j] = my_function(local_0_start + i, j);
|
Chris@10
|
87
|
Chris@10
|
88 /* <span class="roman">compute transforms, in-place, as many times as desired</span> */
|
Chris@10
|
89 fftw_execute(plan);
|
Chris@10
|
90
|
Chris@10
|
91 fftw_destroy_plan(plan);
|
Chris@10
|
92
|
Chris@10
|
93 MPI_Finalize();
|
Chris@10
|
94 }
|
Chris@10
|
95 </pre>
|
Chris@10
|
96 <p>As can be seen above, the MPI interface follows the same basic style
|
Chris@10
|
97 of allocate/plan/execute/destroy as the serial FFTW routines. All of
|
Chris@10
|
98 the MPI-specific routines are prefixed with ‘<samp><span class="samp">fftw_mpi_</span></samp>’ instead
|
Chris@10
|
99 of ‘<samp><span class="samp">fftw_</span></samp>’. There are a few important differences, however:
|
Chris@10
|
100
|
Chris@10
|
101 <p>First, we must call <code>fftw_mpi_init()</code> after calling
|
Chris@10
|
102 <code>MPI_Init</code> (required in all MPI programs) and before calling any
|
Chris@10
|
103 other ‘<samp><span class="samp">fftw_mpi_</span></samp>’ routine.
|
Chris@10
|
104 <a name="index-MPI_005fInit-357"></a><a name="index-fftw_005fmpi_005finit-358"></a>
|
Chris@10
|
105
|
Chris@10
|
106 <p>Second, when we create the plan with <code>fftw_mpi_plan_dft_2d</code>,
|
Chris@10
|
107 analogous to <code>fftw_plan_dft_2d</code>, we pass an additional argument:
|
Chris@10
|
108 the communicator, indicating which processes will participate in the
|
Chris@10
|
109 transform (here <code>MPI_COMM_WORLD</code>, indicating all processes).
|
Chris@10
|
110 Whenever you create, execute, or destroy a plan for an MPI transform,
|
Chris@10
|
111 you must call the corresponding FFTW routine on <em>all</em> processes
|
Chris@10
|
112 in the communicator for that transform. (That is, these are
|
Chris@10
|
113 <em>collective</em> calls.) Note that the plan for the MPI transform
|
Chris@10
|
114 uses the standard <code>fftw_execute</code> and <code>fftw_destroy</code> routines
|
Chris@10
|
115 (on the other hand, there are MPI-specific new-array execute functions
|
Chris@10
|
116 documented below).
|
Chris@10
|
117 <a name="index-collective-function-359"></a><a name="index-fftw_005fmpi_005fplan_005fdft_005f2d-360"></a><a name="index-MPI_005fCOMM_005fWORLD-361"></a>
|
Chris@10
|
118
|
Chris@10
|
119 <p>Third, all of the FFTW MPI routines take <code>ptrdiff_t</code> arguments
|
Chris@10
|
120 instead of <code>int</code> as for the serial FFTW. <code>ptrdiff_t</code> is a
|
Chris@10
|
121 standard C integer type which is (at least) 32 bits wide on a 32-bit
|
Chris@10
|
122 machine and 64 bits wide on a 64-bit machine. This is to make it easy
|
Chris@10
|
123 to specify very large parallel transforms on a 64-bit machine. (You
|
Chris@10
|
124 can specify 64-bit transform sizes in the serial FFTW, too, but only
|
Chris@10
|
125 by using the ‘<samp><span class="samp">guru64</span></samp>’ planner interface. See <a href="64_002dbit-Guru-Interface.html#g_t64_002dbit-Guru-Interface">64-bit Guru Interface</a>.)
|
Chris@10
|
126 <a name="index-ptrdiff_005ft-362"></a><a name="index-g_t64_002dbit-architecture-363"></a>
|
Chris@10
|
127
|
Chris@10
|
128 <p>Fourth, and most importantly, you don't allocate the entire
|
Chris@10
|
129 two-dimensional array on each process. Instead, you call
|
Chris@10
|
130 <code>fftw_mpi_local_size_2d</code> to find out what <em>portion</em> of the
|
Chris@10
|
131 array resides on each processor, and how much space to allocate.
|
Chris@10
|
132 Here, the portion of the array on each process is a <code>local_n0</code> by
|
Chris@10
|
133 <code>N1</code> slice of the total array, starting at index
|
Chris@10
|
134 <code>local_0_start</code>. The total number of <code>fftw_complex</code> numbers
|
Chris@10
|
135 to allocate is given by the <code>alloc_local</code> return value, which
|
Chris@10
|
136 <em>may</em> be greater than <code>local_n0 * N1</code> (in case some
|
Chris@10
|
137 intermediate calculations require additional storage). The data
|
Chris@10
|
138 distribution in FFTW's MPI interface is described in more detail by
|
Chris@10
|
139 the next section.
|
Chris@10
|
140 <a name="index-fftw_005fmpi_005flocal_005fsize_005f2d-364"></a><a name="index-data-distribution-365"></a>
|
Chris@10
|
141
|
Chris@10
|
142 <p>Given the portion of the array that resides on the local process, it
|
Chris@10
|
143 is straightforward to initialize the data (here to a function
|
Chris@10
|
144 <code>myfunction</code>) and otherwise manipulate it. Of course, at the end
|
Chris@10
|
145 of the program you may want to output the data somehow, but
|
Chris@10
|
146 synchronizing this output is up to you and is beyond the scope of this
|
Chris@10
|
147 manual. (One good way to output a large multi-dimensional distributed
|
Chris@10
|
148 array in MPI to a portable binary file is to use the free HDF5
|
Chris@10
|
149 library; see the <a href="http://www.hdfgroup.org/">HDF home page</a>.)
|
Chris@10
|
150 <a name="index-HDF5-366"></a><a name="index-MPI-I_002fO-367"></a>
|
Chris@10
|
151 <!-- -->
|
Chris@10
|
152
|
Chris@10
|
153 </body></html>
|
Chris@10
|
154
|