annotate src/fftw-3.3.3/doc/html/1d-Discrete-Hartley-Transforms-_0028DHTs_0029.html @ 10:37bf6b4a2645

Add FFTW3
author Chris Cannam
date Wed, 20 Mar 2013 15:35:50 +0000
parents
children
rev   line source
Chris@10 1 <html lang="en">
Chris@10 2 <head>
Chris@10 3 <title>1d Discrete Hartley Transforms (DHTs) - FFTW 3.3.3</title>
Chris@10 4 <meta http-equiv="Content-Type" content="text/html">
Chris@10 5 <meta name="description" content="FFTW 3.3.3">
Chris@10 6 <meta name="generator" content="makeinfo 4.13">
Chris@10 7 <link title="Top" rel="start" href="index.html#Top">
Chris@10 8 <link rel="up" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes" title="What FFTW Really Computes">
Chris@10 9 <link rel="prev" href="1d-Real_002dodd-DFTs-_0028DSTs_0029.html#g_t1d-Real_002dodd-DFTs-_0028DSTs_0029" title="1d Real-odd DFTs (DSTs)">
Chris@10 10 <link rel="next" href="Multi_002ddimensional-Transforms.html#Multi_002ddimensional-Transforms" title="Multi-dimensional Transforms">
Chris@10 11 <link href="http://www.gnu.org/software/texinfo/" rel="generator-home" title="Texinfo Homepage">
Chris@10 12 <!--
Chris@10 13 This manual is for FFTW
Chris@10 14 (version 3.3.3, 25 November 2012).
Chris@10 15
Chris@10 16 Copyright (C) 2003 Matteo Frigo.
Chris@10 17
Chris@10 18 Copyright (C) 2003 Massachusetts Institute of Technology.
Chris@10 19
Chris@10 20 Permission is granted to make and distribute verbatim copies of
Chris@10 21 this manual provided the copyright notice and this permission
Chris@10 22 notice are preserved on all copies.
Chris@10 23
Chris@10 24 Permission is granted to copy and distribute modified versions of
Chris@10 25 this manual under the conditions for verbatim copying, provided
Chris@10 26 that the entire resulting derived work is distributed under the
Chris@10 27 terms of a permission notice identical to this one.
Chris@10 28
Chris@10 29 Permission is granted to copy and distribute translations of this
Chris@10 30 manual into another language, under the above conditions for
Chris@10 31 modified versions, except that this permission notice may be
Chris@10 32 stated in a translation approved by the Free Software Foundation.
Chris@10 33 -->
Chris@10 34 <meta http-equiv="Content-Style-Type" content="text/css">
Chris@10 35 <style type="text/css"><!--
Chris@10 36 pre.display { font-family:inherit }
Chris@10 37 pre.format { font-family:inherit }
Chris@10 38 pre.smalldisplay { font-family:inherit; font-size:smaller }
Chris@10 39 pre.smallformat { font-family:inherit; font-size:smaller }
Chris@10 40 pre.smallexample { font-size:smaller }
Chris@10 41 pre.smalllisp { font-size:smaller }
Chris@10 42 span.sc { font-variant:small-caps }
Chris@10 43 span.roman { font-family:serif; font-weight:normal; }
Chris@10 44 span.sansserif { font-family:sans-serif; font-weight:normal; }
Chris@10 45 --></style>
Chris@10 46 </head>
Chris@10 47 <body>
Chris@10 48 <div class="node">
Chris@10 49 <a name="1d-Discrete-Hartley-Transforms-(DHTs)"></a>
Chris@10 50 <a name="g_t1d-Discrete-Hartley-Transforms-_0028DHTs_0029"></a>
Chris@10 51 <p>
Chris@10 52 Next:&nbsp;<a rel="next" accesskey="n" href="Multi_002ddimensional-Transforms.html#Multi_002ddimensional-Transforms">Multi-dimensional Transforms</a>,
Chris@10 53 Previous:&nbsp;<a rel="previous" accesskey="p" href="1d-Real_002dodd-DFTs-_0028DSTs_0029.html#g_t1d-Real_002dodd-DFTs-_0028DSTs_0029">1d Real-odd DFTs (DSTs)</a>,
Chris@10 54 Up:&nbsp;<a rel="up" accesskey="u" href="What-FFTW-Really-Computes.html#What-FFTW-Really-Computes">What FFTW Really Computes</a>
Chris@10 55 <hr>
Chris@10 56 </div>
Chris@10 57
Chris@10 58 <h4 class="subsection">4.8.5 1d Discrete Hartley Transforms (DHTs)</h4>
Chris@10 59
Chris@10 60 <p><a name="index-discrete-Hartley-transform-322"></a><a name="index-DHT-323"></a>The discrete Hartley transform (DHT) of a 1d real array X of size
Chris@10 61 n computes a real array Y of the same size, where:
Chris@10 62 <center><img src="equation-dht.png" align="top">.</center>
Chris@10 63
Chris@10 64 <p><a name="index-normalization-324"></a>FFTW computes an unnormalized transform, in that there is no coefficient
Chris@10 65 in front of the summation in the DHT. In other words, applying the
Chris@10 66 transform twice (the DHT is its own inverse) will multiply the input by
Chris@10 67 n.
Chris@10 68
Chris@10 69 <!-- =========> -->
Chris@10 70 </body></html>
Chris@10 71