annotate src/fftw-3.3.5/rdft/simd/common/hc2cfdftv_6.c @ 42:2cd0e3b3e1fd

Current fftw source
author Chris Cannam
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@42 22 /* Generated on Sat Jul 30 16:52:40 EDT 2016 */
Chris@42 23
Chris@42 24 #include "codelet-rdft.h"
Chris@42 25
Chris@42 26 #ifdef HAVE_FMA
Chris@42 27
Chris@42 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dit -name hc2cfdftv_6 -include hc2cfv.h */
Chris@42 29
Chris@42 30 /*
Chris@42 31 * This function contains 29 FP additions, 30 FP multiplications,
Chris@42 32 * (or, 17 additions, 18 multiplications, 12 fused multiply/add),
Chris@42 33 * 38 stack variables, 2 constants, and 12 memory accesses
Chris@42 34 */
Chris@42 35 #include "hc2cfv.h"
Chris@42 36
Chris@42 37 static void hc2cfdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 38 {
Chris@42 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@42 40 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@42 41 {
Chris@42 42 INT m;
Chris@42 43 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@42 44 V T5, T6, T3, Tj, T4, T9, Te, Th, T1, T2, Ti, Tc, Td, Tb, Tg;
Chris@42 45 V T7, Ta, Tt, Tk, Tr, T8, Ts, Tf, Tx, Tu, To, Tl, Tw, Tv, Tn;
Chris@42 46 V Tm, Tz, Ty, Tp, Tq;
Chris@42 47 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@42 48 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@42 49 Ti = LDW(&(W[0]));
Chris@42 50 Tc = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@42 51 Td = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@42 52 Tb = LDW(&(W[TWVL * 8]));
Chris@42 53 Tg = LDW(&(W[TWVL * 6]));
Chris@42 54 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@42 55 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@42 56 T3 = VFMACONJ(T2, T1);
Chris@42 57 Tj = VZMULIJ(Ti, VFNMSCONJ(T2, T1));
Chris@42 58 T4 = LDW(&(W[TWVL * 4]));
Chris@42 59 T9 = LDW(&(W[TWVL * 2]));
Chris@42 60 Te = VZMULIJ(Tb, VFNMSCONJ(Td, Tc));
Chris@42 61 Th = VZMULJ(Tg, VFMACONJ(Td, Tc));
Chris@42 62 T7 = VZMULIJ(T4, VFNMSCONJ(T6, T5));
Chris@42 63 Ta = VZMULJ(T9, VFMACONJ(T6, T5));
Chris@42 64 Tt = VADD(Tj, Th);
Chris@42 65 Tk = VSUB(Th, Tj);
Chris@42 66 Tr = VADD(T3, T7);
Chris@42 67 T8 = VSUB(T3, T7);
Chris@42 68 Ts = VADD(Ta, Te);
Chris@42 69 Tf = VSUB(Ta, Te);
Chris@42 70 Tx = VMUL(LDK(KP866025403), VSUB(Tt, Ts));
Chris@42 71 Tu = VADD(Ts, Tt);
Chris@42 72 To = VMUL(LDK(KP866025403), VSUB(Tk, Tf));
Chris@42 73 Tl = VADD(Tf, Tk);
Chris@42 74 Tw = VFNMS(LDK(KP500000000), Tu, Tr);
Chris@42 75 Tv = VCONJ(VMUL(LDK(KP500000000), VADD(Tr, Tu)));
Chris@42 76 Tn = VFNMS(LDK(KP500000000), Tl, T8);
Chris@42 77 Tm = VMUL(LDK(KP500000000), VADD(T8, Tl));
Chris@42 78 Tz = VMUL(LDK(KP500000000), VFMAI(Tx, Tw));
Chris@42 79 Ty = VCONJ(VMUL(LDK(KP500000000), VFNMSI(Tx, Tw)));
Chris@42 80 ST(&(Rm[WS(rs, 2)]), Tv, -ms, &(Rm[0]));
Chris@42 81 Tp = VMUL(LDK(KP500000000), VFNMSI(To, Tn));
Chris@42 82 Tq = VCONJ(VMUL(LDK(KP500000000), VFMAI(To, Tn)));
Chris@42 83 ST(&(Rp[0]), Tm, ms, &(Rp[0]));
Chris@42 84 ST(&(Rp[WS(rs, 1)]), Tz, ms, &(Rp[WS(rs, 1)]));
Chris@42 85 ST(&(Rm[0]), Ty, -ms, &(Rm[0]));
Chris@42 86 ST(&(Rm[WS(rs, 1)]), Tq, -ms, &(Rm[WS(rs, 1)]));
Chris@42 87 ST(&(Rp[WS(rs, 2)]), Tp, ms, &(Rp[0]));
Chris@42 88 }
Chris@42 89 }
Chris@42 90 VLEAVE();
Chris@42 91 }
Chris@42 92
Chris@42 93 static const tw_instr twinstr[] = {
Chris@42 94 VTW(1, 1),
Chris@42 95 VTW(1, 2),
Chris@42 96 VTW(1, 3),
Chris@42 97 VTW(1, 4),
Chris@42 98 VTW(1, 5),
Chris@42 99 {TW_NEXT, VL, 0}
Chris@42 100 };
Chris@42 101
Chris@42 102 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cfdftv_6"), twinstr, &GENUS, {17, 18, 12, 0} };
Chris@42 103
Chris@42 104 void XSIMD(codelet_hc2cfdftv_6) (planner *p) {
Chris@42 105 X(khc2c_register) (p, hc2cfdftv_6, &desc, HC2C_VIA_DFT);
Chris@42 106 }
Chris@42 107 #else /* HAVE_FMA */
Chris@42 108
Chris@42 109 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 6 -dit -name hc2cfdftv_6 -include hc2cfv.h */
Chris@42 110
Chris@42 111 /*
Chris@42 112 * This function contains 29 FP additions, 20 FP multiplications,
Chris@42 113 * (or, 27 additions, 18 multiplications, 2 fused multiply/add),
Chris@42 114 * 42 stack variables, 3 constants, and 12 memory accesses
Chris@42 115 */
Chris@42 116 #include "hc2cfv.h"
Chris@42 117
Chris@42 118 static void hc2cfdftv_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 119 {
Chris@42 120 DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
Chris@42 121 DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
Chris@42 122 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@42 123 {
Chris@42 124 INT m;
Chris@42 125 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 10)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(24, rs)) {
Chris@42 126 V Ta, Tu, Tn, Tw, Ti, Tv, T1, T8, Tg, Tf, T7, T3, Te, T6, T2;
Chris@42 127 V T4, T9, T5, Tk, Tm, Tj, Tl, Tc, Th, Tb, Td, Tr, Tp, Tq, To;
Chris@42 128 V Tt, Ts, TA, Ty, Tz, Tx, TC, TB;
Chris@42 129 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@42 130 T8 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@42 131 Tg = LD(&(Rp[WS(rs, 2)]), ms, &(Rp[0]));
Chris@42 132 Te = LD(&(Rm[WS(rs, 2)]), -ms, &(Rm[0]));
Chris@42 133 Tf = VCONJ(Te);
Chris@42 134 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@42 135 T7 = VCONJ(T6);
Chris@42 136 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@42 137 T3 = VCONJ(T2);
Chris@42 138 T4 = VADD(T1, T3);
Chris@42 139 T5 = LDW(&(W[TWVL * 4]));
Chris@42 140 T9 = VZMULIJ(T5, VSUB(T7, T8));
Chris@42 141 Ta = VADD(T4, T9);
Chris@42 142 Tu = VSUB(T4, T9);
Chris@42 143 Tj = LDW(&(W[0]));
Chris@42 144 Tk = VZMULIJ(Tj, VSUB(T3, T1));
Chris@42 145 Tl = LDW(&(W[TWVL * 6]));
Chris@42 146 Tm = VZMULJ(Tl, VADD(Tf, Tg));
Chris@42 147 Tn = VADD(Tk, Tm);
Chris@42 148 Tw = VSUB(Tm, Tk);
Chris@42 149 Tb = LDW(&(W[TWVL * 2]));
Chris@42 150 Tc = VZMULJ(Tb, VADD(T7, T8));
Chris@42 151 Td = LDW(&(W[TWVL * 8]));
Chris@42 152 Th = VZMULIJ(Td, VSUB(Tf, Tg));
Chris@42 153 Ti = VADD(Tc, Th);
Chris@42 154 Tv = VSUB(Tc, Th);
Chris@42 155 Tr = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(Tn, Ti))));
Chris@42 156 To = VADD(Ti, Tn);
Chris@42 157 Tp = VMUL(LDK(KP500000000), VADD(Ta, To));
Chris@42 158 Tq = VFNMS(LDK(KP250000000), To, VMUL(LDK(KP500000000), Ta));
Chris@42 159 ST(&(Rp[0]), Tp, ms, &(Rp[0]));
Chris@42 160 Tt = VCONJ(VADD(Tq, Tr));
Chris@42 161 ST(&(Rm[WS(rs, 1)]), Tt, -ms, &(Rm[WS(rs, 1)]));
Chris@42 162 Ts = VSUB(Tq, Tr);
Chris@42 163 ST(&(Rp[WS(rs, 2)]), Ts, ms, &(Rp[0]));
Chris@42 164 TA = VMUL(LDK(KP500000000), VBYI(VMUL(LDK(KP866025403), VSUB(Tw, Tv))));
Chris@42 165 Tx = VADD(Tv, Tw);
Chris@42 166 Ty = VCONJ(VMUL(LDK(KP500000000), VADD(Tu, Tx)));
Chris@42 167 Tz = VFNMS(LDK(KP250000000), Tx, VMUL(LDK(KP500000000), Tu));
Chris@42 168 ST(&(Rm[WS(rs, 2)]), Ty, -ms, &(Rm[0]));
Chris@42 169 TC = VADD(Tz, TA);
Chris@42 170 ST(&(Rp[WS(rs, 1)]), TC, ms, &(Rp[WS(rs, 1)]));
Chris@42 171 TB = VCONJ(VSUB(Tz, TA));
Chris@42 172 ST(&(Rm[0]), TB, -ms, &(Rm[0]));
Chris@42 173 }
Chris@42 174 }
Chris@42 175 VLEAVE();
Chris@42 176 }
Chris@42 177
Chris@42 178 static const tw_instr twinstr[] = {
Chris@42 179 VTW(1, 1),
Chris@42 180 VTW(1, 2),
Chris@42 181 VTW(1, 3),
Chris@42 182 VTW(1, 4),
Chris@42 183 VTW(1, 5),
Chris@42 184 {TW_NEXT, VL, 0}
Chris@42 185 };
Chris@42 186
Chris@42 187 static const hc2c_desc desc = { 6, XSIMD_STRING("hc2cfdftv_6"), twinstr, &GENUS, {27, 18, 2, 0} };
Chris@42 188
Chris@42 189 void XSIMD(codelet_hc2cfdftv_6) (planner *p) {
Chris@42 190 X(khc2c_register) (p, hc2cfdftv_6, &desc, HC2C_VIA_DFT);
Chris@42 191 }
Chris@42 192 #endif /* HAVE_FMA */