annotate src/fftw-3.3.5/rdft/simd/common/hc2cfdftv_4.c @ 42:2cd0e3b3e1fd

Current fftw source
author Chris Cannam
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@42 22 /* Generated on Sat Jul 30 16:52:40 EDT 2016 */
Chris@42 23
Chris@42 24 #include "codelet-rdft.h"
Chris@42 25
Chris@42 26 #ifdef HAVE_FMA
Chris@42 27
Chris@42 28 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dit -name hc2cfdftv_4 -include hc2cfv.h */
Chris@42 29
Chris@42 30 /*
Chris@42 31 * This function contains 15 FP additions, 16 FP multiplications,
Chris@42 32 * (or, 9 additions, 10 multiplications, 6 fused multiply/add),
Chris@42 33 * 21 stack variables, 1 constants, and 8 memory accesses
Chris@42 34 */
Chris@42 35 #include "hc2cfv.h"
Chris@42 36
Chris@42 37 static void hc2cfdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 38 {
Chris@42 39 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@42 40 {
Chris@42 41 INT m;
Chris@42 42 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@42 43 V T1, T2, Tb, T5, T6, T4, T9, T3, Tc, T7, Ta, Tg, T8, Td, Th;
Chris@42 44 V Tf, Te, Ti, Tj;
Chris@42 45 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@42 46 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@42 47 Tb = LDW(&(W[0]));
Chris@42 48 T5 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@42 49 T6 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@42 50 T4 = LDW(&(W[TWVL * 2]));
Chris@42 51 T9 = LDW(&(W[TWVL * 4]));
Chris@42 52 T3 = VFMACONJ(T2, T1);
Chris@42 53 Tc = VZMULIJ(Tb, VFNMSCONJ(T2, T1));
Chris@42 54 T7 = VZMULJ(T4, VFMACONJ(T6, T5));
Chris@42 55 Ta = VZMULIJ(T9, VFNMSCONJ(T6, T5));
Chris@42 56 Tg = VADD(T3, T7);
Chris@42 57 T8 = VSUB(T3, T7);
Chris@42 58 Td = VSUB(Ta, Tc);
Chris@42 59 Th = VADD(Tc, Ta);
Chris@42 60 Tf = VCONJ(VMUL(LDK(KP500000000), VFMAI(Td, T8)));
Chris@42 61 Te = VMUL(LDK(KP500000000), VFNMSI(Td, T8));
Chris@42 62 Ti = VMUL(LDK(KP500000000), VSUB(Tg, Th));
Chris@42 63 Tj = VCONJ(VMUL(LDK(KP500000000), VADD(Th, Tg)));
Chris@42 64 ST(&(Rm[0]), Tf, -ms, &(Rm[0]));
Chris@42 65 ST(&(Rp[WS(rs, 1)]), Te, ms, &(Rp[WS(rs, 1)]));
Chris@42 66 ST(&(Rp[0]), Ti, ms, &(Rp[0]));
Chris@42 67 ST(&(Rm[WS(rs, 1)]), Tj, -ms, &(Rm[WS(rs, 1)]));
Chris@42 68 }
Chris@42 69 }
Chris@42 70 VLEAVE();
Chris@42 71 }
Chris@42 72
Chris@42 73 static const tw_instr twinstr[] = {
Chris@42 74 VTW(1, 1),
Chris@42 75 VTW(1, 2),
Chris@42 76 VTW(1, 3),
Chris@42 77 {TW_NEXT, VL, 0}
Chris@42 78 };
Chris@42 79
Chris@42 80 static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cfdftv_4"), twinstr, &GENUS, {9, 10, 6, 0} };
Chris@42 81
Chris@42 82 void XSIMD(codelet_hc2cfdftv_4) (planner *p) {
Chris@42 83 X(khc2c_register) (p, hc2cfdftv_4, &desc, HC2C_VIA_DFT);
Chris@42 84 }
Chris@42 85 #else /* HAVE_FMA */
Chris@42 86
Chris@42 87 /* Generated by: ../../../genfft/gen_hc2cdft_c.native -simd -compact -variables 4 -pipeline-latency 8 -trivial-stores -variables 32 -no-generate-bytw -n 4 -dit -name hc2cfdftv_4 -include hc2cfv.h */
Chris@42 88
Chris@42 89 /*
Chris@42 90 * This function contains 15 FP additions, 10 FP multiplications,
Chris@42 91 * (or, 15 additions, 10 multiplications, 0 fused multiply/add),
Chris@42 92 * 23 stack variables, 1 constants, and 8 memory accesses
Chris@42 93 */
Chris@42 94 #include "hc2cfv.h"
Chris@42 95
Chris@42 96 static void hc2cfdftv_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 97 {
Chris@42 98 DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
Chris@42 99 {
Chris@42 100 INT m;
Chris@42 101 for (m = mb, W = W + ((mb - 1) * ((TWVL / VL) * 6)); m < me; m = m + VL, Rp = Rp + (VL * ms), Ip = Ip + (VL * ms), Rm = Rm - (VL * ms), Im = Im - (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@42 102 V T4, Tc, T9, Te, T1, T3, T2, Tb, T6, T8, T7, T5, Td, Tg, Th;
Chris@42 103 V Ta, Tf, Tk, Tl, Ti, Tj;
Chris@42 104 T1 = LD(&(Rp[0]), ms, &(Rp[0]));
Chris@42 105 T2 = LD(&(Rm[0]), -ms, &(Rm[0]));
Chris@42 106 T3 = VCONJ(T2);
Chris@42 107 T4 = VADD(T1, T3);
Chris@42 108 Tb = LDW(&(W[0]));
Chris@42 109 Tc = VZMULIJ(Tb, VSUB(T3, T1));
Chris@42 110 T6 = LD(&(Rp[WS(rs, 1)]), ms, &(Rp[WS(rs, 1)]));
Chris@42 111 T7 = LD(&(Rm[WS(rs, 1)]), -ms, &(Rm[WS(rs, 1)]));
Chris@42 112 T8 = VCONJ(T7);
Chris@42 113 T5 = LDW(&(W[TWVL * 2]));
Chris@42 114 T9 = VZMULJ(T5, VADD(T6, T8));
Chris@42 115 Td = LDW(&(W[TWVL * 4]));
Chris@42 116 Te = VZMULIJ(Td, VSUB(T8, T6));
Chris@42 117 Ta = VSUB(T4, T9);
Chris@42 118 Tf = VBYI(VSUB(Tc, Te));
Chris@42 119 Tg = VMUL(LDK(KP500000000), VSUB(Ta, Tf));
Chris@42 120 Th = VCONJ(VMUL(LDK(KP500000000), VADD(Ta, Tf)));
Chris@42 121 ST(&(Rp[WS(rs, 1)]), Tg, ms, &(Rp[WS(rs, 1)]));
Chris@42 122 ST(&(Rm[0]), Th, -ms, &(Rm[0]));
Chris@42 123 Ti = VADD(T4, T9);
Chris@42 124 Tj = VADD(Tc, Te);
Chris@42 125 Tk = VCONJ(VMUL(LDK(KP500000000), VSUB(Ti, Tj)));
Chris@42 126 Tl = VMUL(LDK(KP500000000), VADD(Ti, Tj));
Chris@42 127 ST(&(Rm[WS(rs, 1)]), Tk, -ms, &(Rm[WS(rs, 1)]));
Chris@42 128 ST(&(Rp[0]), Tl, ms, &(Rp[0]));
Chris@42 129 }
Chris@42 130 }
Chris@42 131 VLEAVE();
Chris@42 132 }
Chris@42 133
Chris@42 134 static const tw_instr twinstr[] = {
Chris@42 135 VTW(1, 1),
Chris@42 136 VTW(1, 2),
Chris@42 137 VTW(1, 3),
Chris@42 138 {TW_NEXT, VL, 0}
Chris@42 139 };
Chris@42 140
Chris@42 141 static const hc2c_desc desc = { 4, XSIMD_STRING("hc2cfdftv_4"), twinstr, &GENUS, {15, 10, 0, 0} };
Chris@42 142
Chris@42 143 void XSIMD(codelet_hc2cfdftv_4) (planner *p) {
Chris@42 144 X(khc2c_register) (p, hc2cfdftv_4, &desc, HC2C_VIA_DFT);
Chris@42 145 }
Chris@42 146 #endif /* HAVE_FMA */