annotate src/fftw-3.3.5/rdft/dht-r2hc.c @ 42:2cd0e3b3e1fd

Current fftw source
author Chris Cannam
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21
Chris@42 22 /* Solve a DHT problem (Discrete Hartley Transform) via post-processing
Chris@42 23 of an R2HC problem. */
Chris@42 24
Chris@42 25 #include "rdft.h"
Chris@42 26
Chris@42 27 typedef struct {
Chris@42 28 solver super;
Chris@42 29 } S;
Chris@42 30
Chris@42 31 typedef struct {
Chris@42 32 plan_rdft super;
Chris@42 33 plan *cld;
Chris@42 34 INT os;
Chris@42 35 INT n;
Chris@42 36 } P;
Chris@42 37
Chris@42 38 static void apply(const plan *ego_, R *I, R *O)
Chris@42 39 {
Chris@42 40 const P *ego = (const P *) ego_;
Chris@42 41 INT os = ego->os;
Chris@42 42 INT i, n = ego->n;
Chris@42 43
Chris@42 44 {
Chris@42 45 plan_rdft *cld = (plan_rdft *) ego->cld;
Chris@42 46 cld->apply((plan *) cld, I, O);
Chris@42 47 }
Chris@42 48
Chris@42 49 for (i = 1; i < n - i; ++i) {
Chris@42 50 E a, b;
Chris@42 51 a = O[os * i];
Chris@42 52 b = O[os * (n - i)];
Chris@42 53 #if FFT_SIGN == -1
Chris@42 54 O[os * i] = a - b;
Chris@42 55 O[os * (n - i)] = a + b;
Chris@42 56 #else
Chris@42 57 O[os * i] = a + b;
Chris@42 58 O[os * (n - i)] = a - b;
Chris@42 59 #endif
Chris@42 60 }
Chris@42 61 }
Chris@42 62
Chris@42 63 static void awake(plan *ego_, enum wakefulness wakefulness)
Chris@42 64 {
Chris@42 65 P *ego = (P *) ego_;
Chris@42 66 X(plan_awake)(ego->cld, wakefulness);
Chris@42 67 }
Chris@42 68
Chris@42 69 static void destroy(plan *ego_)
Chris@42 70 {
Chris@42 71 P *ego = (P *) ego_;
Chris@42 72 X(plan_destroy_internal)(ego->cld);
Chris@42 73 }
Chris@42 74
Chris@42 75 static void print(const plan *ego_, printer *p)
Chris@42 76 {
Chris@42 77 const P *ego = (const P *) ego_;
Chris@42 78 p->print(p, "(dht-r2hc-%D%(%p%))", ego->n, ego->cld);
Chris@42 79 }
Chris@42 80
Chris@42 81 static int applicable0(const problem *p_, const planner *plnr)
Chris@42 82 {
Chris@42 83 const problem_rdft *p = (const problem_rdft *) p_;
Chris@42 84 return (1
Chris@42 85 && !NO_DHT_R2HCP(plnr)
Chris@42 86 && p->sz->rnk == 1
Chris@42 87 && p->vecsz->rnk == 0
Chris@42 88 && p->kind[0] == DHT
Chris@42 89 );
Chris@42 90 }
Chris@42 91
Chris@42 92 static int applicable(const solver *ego, const problem *p, const planner *plnr)
Chris@42 93 {
Chris@42 94 UNUSED(ego);
Chris@42 95 return (!NO_SLOWP(plnr) && applicable0(p, plnr));
Chris@42 96 }
Chris@42 97
Chris@42 98 static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
Chris@42 99 {
Chris@42 100 P *pln;
Chris@42 101 const problem_rdft *p;
Chris@42 102 plan *cld;
Chris@42 103
Chris@42 104 static const plan_adt padt = {
Chris@42 105 X(rdft_solve), awake, print, destroy
Chris@42 106 };
Chris@42 107
Chris@42 108 if (!applicable(ego_, p_, plnr))
Chris@42 109 return (plan *)0;
Chris@42 110
Chris@42 111 p = (const problem_rdft *) p_;
Chris@42 112
Chris@42 113 /* NO_DHT_R2HC stops infinite loops with rdft-dht.c */
Chris@42 114 cld = X(mkplan_f_d)(plnr,
Chris@42 115 X(mkproblem_rdft_1)(p->sz, p->vecsz,
Chris@42 116 p->I, p->O, R2HC),
Chris@42 117 NO_DHT_R2HC, 0, 0);
Chris@42 118 if (!cld) return (plan *)0;
Chris@42 119
Chris@42 120 pln = MKPLAN_RDFT(P, &padt, apply);
Chris@42 121
Chris@42 122 pln->n = p->sz->dims[0].n;
Chris@42 123 pln->os = p->sz->dims[0].os;
Chris@42 124 pln->cld = cld;
Chris@42 125
Chris@42 126 pln->super.super.ops = cld->ops;
Chris@42 127 pln->super.super.ops.other += 4 * ((pln->n - 1)/2);
Chris@42 128 pln->super.super.ops.add += 2 * ((pln->n - 1)/2);
Chris@42 129
Chris@42 130 return &(pln->super.super);
Chris@42 131 }
Chris@42 132
Chris@42 133 /* constructor */
Chris@42 134 static solver *mksolver(void)
Chris@42 135 {
Chris@42 136 static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
Chris@42 137 S *slv = MKSOLVER(S, &sadt);
Chris@42 138 return &(slv->super);
Chris@42 139 }
Chris@42 140
Chris@42 141 void X(dht_r2hc_register)(planner *p)
Chris@42 142 {
Chris@42 143 REGISTER_SOLVER(p, mksolver());
Chris@42 144 }