annotate src/fftw-3.3.5/doc/html/MPI-Plan-Creation.html @ 42:2cd0e3b3e1fd

Current fftw source
author Chris Cannam
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
rev   line source
Chris@42 1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
Chris@42 2 <html>
Chris@42 3 <!-- This manual is for FFTW
Chris@42 4 (version 3.3.5, 30 July 2016).
Chris@42 5
Chris@42 6 Copyright (C) 2003 Matteo Frigo.
Chris@42 7
Chris@42 8 Copyright (C) 2003 Massachusetts Institute of Technology.
Chris@42 9
Chris@42 10 Permission is granted to make and distribute verbatim copies of this
Chris@42 11 manual provided the copyright notice and this permission notice are
Chris@42 12 preserved on all copies.
Chris@42 13
Chris@42 14 Permission is granted to copy and distribute modified versions of this
Chris@42 15 manual under the conditions for verbatim copying, provided that the
Chris@42 16 entire resulting derived work is distributed under the terms of a
Chris@42 17 permission notice identical to this one.
Chris@42 18
Chris@42 19 Permission is granted to copy and distribute translations of this manual
Chris@42 20 into another language, under the above conditions for modified versions,
Chris@42 21 except that this permission notice may be stated in a translation
Chris@42 22 approved by the Free Software Foundation. -->
Chris@42 23 <!-- Created by GNU Texinfo 5.2, http://www.gnu.org/software/texinfo/ -->
Chris@42 24 <head>
Chris@42 25 <title>FFTW 3.3.5: MPI Plan Creation</title>
Chris@42 26
Chris@42 27 <meta name="description" content="FFTW 3.3.5: MPI Plan Creation">
Chris@42 28 <meta name="keywords" content="FFTW 3.3.5: MPI Plan Creation">
Chris@42 29 <meta name="resource-type" content="document">
Chris@42 30 <meta name="distribution" content="global">
Chris@42 31 <meta name="Generator" content="makeinfo">
Chris@42 32 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
Chris@42 33 <link href="index.html#Top" rel="start" title="Top">
Chris@42 34 <link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
Chris@42 35 <link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
Chris@42 36 <link href="FFTW-MPI-Reference.html#FFTW-MPI-Reference" rel="up" title="FFTW MPI Reference">
Chris@42 37 <link href="MPI-Wisdom-Communication.html#MPI-Wisdom-Communication" rel="next" title="MPI Wisdom Communication">
Chris@42 38 <link href="MPI-Data-Distribution-Functions.html#MPI-Data-Distribution-Functions" rel="prev" title="MPI Data Distribution Functions">
Chris@42 39 <style type="text/css">
Chris@42 40 <!--
Chris@42 41 a.summary-letter {text-decoration: none}
Chris@42 42 blockquote.smallquotation {font-size: smaller}
Chris@42 43 div.display {margin-left: 3.2em}
Chris@42 44 div.example {margin-left: 3.2em}
Chris@42 45 div.indentedblock {margin-left: 3.2em}
Chris@42 46 div.lisp {margin-left: 3.2em}
Chris@42 47 div.smalldisplay {margin-left: 3.2em}
Chris@42 48 div.smallexample {margin-left: 3.2em}
Chris@42 49 div.smallindentedblock {margin-left: 3.2em; font-size: smaller}
Chris@42 50 div.smalllisp {margin-left: 3.2em}
Chris@42 51 kbd {font-style:oblique}
Chris@42 52 pre.display {font-family: inherit}
Chris@42 53 pre.format {font-family: inherit}
Chris@42 54 pre.menu-comment {font-family: serif}
Chris@42 55 pre.menu-preformatted {font-family: serif}
Chris@42 56 pre.smalldisplay {font-family: inherit; font-size: smaller}
Chris@42 57 pre.smallexample {font-size: smaller}
Chris@42 58 pre.smallformat {font-family: inherit; font-size: smaller}
Chris@42 59 pre.smalllisp {font-size: smaller}
Chris@42 60 span.nocodebreak {white-space:nowrap}
Chris@42 61 span.nolinebreak {white-space:nowrap}
Chris@42 62 span.roman {font-family:serif; font-weight:normal}
Chris@42 63 span.sansserif {font-family:sans-serif; font-weight:normal}
Chris@42 64 ul.no-bullet {list-style: none}
Chris@42 65 -->
Chris@42 66 </style>
Chris@42 67
Chris@42 68
Chris@42 69 </head>
Chris@42 70
Chris@42 71 <body lang="en" bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080" alink="#FF0000">
Chris@42 72 <a name="MPI-Plan-Creation"></a>
Chris@42 73 <div class="header">
Chris@42 74 <p>
Chris@42 75 Next: <a href="MPI-Wisdom-Communication.html#MPI-Wisdom-Communication" accesskey="n" rel="next">MPI Wisdom Communication</a>, Previous: <a href="MPI-Data-Distribution-Functions.html#MPI-Data-Distribution-Functions" accesskey="p" rel="prev">MPI Data Distribution Functions</a>, Up: <a href="FFTW-MPI-Reference.html#FFTW-MPI-Reference" accesskey="u" rel="up">FFTW MPI Reference</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
Chris@42 76 </div>
Chris@42 77 <hr>
Chris@42 78 <a name="MPI-Plan-Creation-1"></a>
Chris@42 79 <h4 class="subsection">6.12.5 MPI Plan Creation</h4>
Chris@42 80
Chris@42 81 <a name="Complex_002ddata-MPI-DFTs"></a>
Chris@42 82 <h4 class="subsubheading">Complex-data MPI DFTs</h4>
Chris@42 83
Chris@42 84 <p>Plans for complex-data DFTs (see <a href="2d-MPI-example.html#g_t2d-MPI-example">2d MPI example</a>) are created by:
Chris@42 85 </p>
Chris@42 86 <a name="index-fftw_005fmpi_005fplan_005fdft_005f1d"></a>
Chris@42 87 <a name="index-fftw_005fmpi_005fplan_005fdft_005f2d-1"></a>
Chris@42 88 <a name="index-fftw_005fmpi_005fplan_005fdft_005f3d"></a>
Chris@42 89 <a name="index-fftw_005fmpi_005fplan_005fdft"></a>
Chris@42 90 <a name="index-fftw_005fmpi_005fplan_005fmany_005fdft"></a>
Chris@42 91 <div class="example">
Chris@42 92 <pre class="example">fftw_plan fftw_mpi_plan_dft_1d(ptrdiff_t n0, fftw_complex *in, fftw_complex *out,
Chris@42 93 MPI_Comm comm, int sign, unsigned flags);
Chris@42 94 fftw_plan fftw_mpi_plan_dft_2d(ptrdiff_t n0, ptrdiff_t n1,
Chris@42 95 fftw_complex *in, fftw_complex *out,
Chris@42 96 MPI_Comm comm, int sign, unsigned flags);
Chris@42 97 fftw_plan fftw_mpi_plan_dft_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2,
Chris@42 98 fftw_complex *in, fftw_complex *out,
Chris@42 99 MPI_Comm comm, int sign, unsigned flags);
Chris@42 100 fftw_plan fftw_mpi_plan_dft(int rnk, const ptrdiff_t *n,
Chris@42 101 fftw_complex *in, fftw_complex *out,
Chris@42 102 MPI_Comm comm, int sign, unsigned flags);
Chris@42 103 fftw_plan fftw_mpi_plan_many_dft(int rnk, const ptrdiff_t *n,
Chris@42 104 ptrdiff_t howmany, ptrdiff_t block, ptrdiff_t tblock,
Chris@42 105 fftw_complex *in, fftw_complex *out,
Chris@42 106 MPI_Comm comm, int sign, unsigned flags);
Chris@42 107 </pre></div>
Chris@42 108
Chris@42 109 <a name="index-MPI-communicator-2"></a>
Chris@42 110 <a name="index-collective-function-4"></a>
Chris@42 111 <p>These are similar to their serial counterparts (see <a href="Complex-DFTs.html#Complex-DFTs">Complex DFTs</a>)
Chris@42 112 in specifying the dimensions, sign, and flags of the transform. The
Chris@42 113 <code>comm</code> argument gives an MPI communicator that specifies the set
Chris@42 114 of processes to participate in the transform; plan creation is a
Chris@42 115 collective function that must be called for all processes in the
Chris@42 116 communicator. The <code>in</code> and <code>out</code> pointers refer only to a
Chris@42 117 portion of the overall transform data (see <a href="MPI-Data-Distribution.html#MPI-Data-Distribution">MPI Data Distribution</a>)
Chris@42 118 as specified by the &lsquo;<samp>local_size</samp>&rsquo; functions in the previous
Chris@42 119 section. Unless <code>flags</code> contains <code>FFTW_ESTIMATE</code>, these
Chris@42 120 arrays are overwritten during plan creation as for the serial
Chris@42 121 interface. For multi-dimensional transforms, any dimensions <code>&gt;
Chris@42 122 1</code> are supported; for one-dimensional transforms, only composite
Chris@42 123 (non-prime) <code>n0</code> are currently supported (unlike the serial
Chris@42 124 FFTW). Requesting an unsupported transform size will yield a
Chris@42 125 <code>NULL</code> plan. (As in the serial interface, highly composite sizes
Chris@42 126 generally yield the best performance.)
Chris@42 127 </p>
Chris@42 128 <a name="index-advanced-interface-6"></a>
Chris@42 129 <a name="index-FFTW_005fMPI_005fDEFAULT_005fBLOCK-2"></a>
Chris@42 130 <a name="index-stride-3"></a>
Chris@42 131 <p>The advanced-interface <code>fftw_mpi_plan_many_dft</code> additionally
Chris@42 132 allows you to specify the block sizes for the first dimension
Chris@42 133 (<code>block</code>) of the n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub> input data and the first dimension
Chris@42 134 (<code>tblock</code>) of the n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&hellip;&times;&nbsp;n<sub>d-1</sub> transposed data (at intermediate
Chris@42 135 steps of the transform, and for the output if
Chris@42 136 <code>FFTW_TRANSPOSED_OUT</code> is specified in <code>flags</code>). These must
Chris@42 137 be the same block sizes as were passed to the corresponding
Chris@42 138 &lsquo;<samp>local_size</samp>&rsquo; function; you can pass <code>FFTW_MPI_DEFAULT_BLOCK</code>
Chris@42 139 to use FFTW&rsquo;s default block size as in the basic interface. Also, the
Chris@42 140 <code>howmany</code> parameter specifies that the transform is of contiguous
Chris@42 141 <code>howmany</code>-tuples rather than individual complex numbers; this
Chris@42 142 corresponds to the same parameter in the serial advanced interface
Chris@42 143 (see <a href="Advanced-Complex-DFTs.html#Advanced-Complex-DFTs">Advanced Complex DFTs</a>) with <code>stride = howmany</code> and
Chris@42 144 <code>dist = 1</code>.
Chris@42 145 </p>
Chris@42 146 <a name="MPI-flags"></a>
Chris@42 147 <h4 class="subsubheading">MPI flags</h4>
Chris@42 148
Chris@42 149 <p>The <code>flags</code> can be any of those for the serial FFTW
Chris@42 150 (see <a href="Planner-Flags.html#Planner-Flags">Planner Flags</a>), and in addition may include one or more of
Chris@42 151 the following MPI-specific flags, which improve performance at the
Chris@42 152 cost of changing the output or input data formats.
Chris@42 153 </p>
Chris@42 154 <ul>
Chris@42 155 <li> <a name="index-FFTW_005fMPI_005fSCRAMBLED_005fOUT-2"></a>
Chris@42 156 <a name="index-FFTW_005fMPI_005fSCRAMBLED_005fIN-2"></a>
Chris@42 157 <code>FFTW_MPI_SCRAMBLED_OUT</code>, <code>FFTW_MPI_SCRAMBLED_IN</code>: valid for
Chris@42 158 1d transforms only, these flags indicate that the output/input of the
Chris@42 159 transform are in an undocumented &ldquo;scrambled&rdquo; order. A forward
Chris@42 160 <code>FFTW_MPI_SCRAMBLED_OUT</code> transform can be inverted by a backward
Chris@42 161 <code>FFTW_MPI_SCRAMBLED_IN</code> (times the usual 1/<i>N</i> normalization).
Chris@42 162 See <a href="One_002ddimensional-distributions.html#One_002ddimensional-distributions">One-dimensional distributions</a>.
Chris@42 163
Chris@42 164 </li><li> <a name="index-FFTW_005fMPI_005fTRANSPOSED_005fOUT-2"></a>
Chris@42 165 <a name="index-FFTW_005fMPI_005fTRANSPOSED_005fIN-2"></a>
Chris@42 166 <code>FFTW_MPI_TRANSPOSED_OUT</code>, <code>FFTW_MPI_TRANSPOSED_IN</code>: valid
Chris@42 167 for multidimensional (<code>rnk &gt; 1</code>) transforms only, these flags
Chris@42 168 specify that the output or input of an n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub> transform is
Chris@42 169 transposed to n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&hellip;&times;&nbsp;n<sub>d-1</sub>. See <a href="Transposed-distributions.html#Transposed-distributions">Transposed distributions</a>.
Chris@42 170
Chris@42 171 </li></ul>
Chris@42 172
Chris@42 173 <a name="Real_002ddata-MPI-DFTs"></a>
Chris@42 174 <h4 class="subsubheading">Real-data MPI DFTs</h4>
Chris@42 175
Chris@42 176 <a name="index-r2c-4"></a>
Chris@42 177 <p>Plans for real-input/output (r2c/c2r) DFTs (see <a href="Multi_002ddimensional-MPI-DFTs-of-Real-Data.html#Multi_002ddimensional-MPI-DFTs-of-Real-Data">Multi-dimensional MPI DFTs of Real Data</a>) are created by:
Chris@42 178 </p>
Chris@42 179 <a name="index-fftw_005fmpi_005fplan_005fdft_005fr2c_005f2d"></a>
Chris@42 180 <a name="index-fftw_005fmpi_005fplan_005fdft_005fr2c_005f2d-1"></a>
Chris@42 181 <a name="index-fftw_005fmpi_005fplan_005fdft_005fr2c_005f3d"></a>
Chris@42 182 <a name="index-fftw_005fmpi_005fplan_005fdft_005fr2c"></a>
Chris@42 183 <a name="index-fftw_005fmpi_005fplan_005fdft_005fc2r_005f2d"></a>
Chris@42 184 <a name="index-fftw_005fmpi_005fplan_005fdft_005fc2r_005f2d-1"></a>
Chris@42 185 <a name="index-fftw_005fmpi_005fplan_005fdft_005fc2r_005f3d"></a>
Chris@42 186 <a name="index-fftw_005fmpi_005fplan_005fdft_005fc2r"></a>
Chris@42 187 <div class="example">
Chris@42 188 <pre class="example">fftw_plan fftw_mpi_plan_dft_r2c_2d(ptrdiff_t n0, ptrdiff_t n1,
Chris@42 189 double *in, fftw_complex *out,
Chris@42 190 MPI_Comm comm, unsigned flags);
Chris@42 191 fftw_plan fftw_mpi_plan_dft_r2c_2d(ptrdiff_t n0, ptrdiff_t n1,
Chris@42 192 double *in, fftw_complex *out,
Chris@42 193 MPI_Comm comm, unsigned flags);
Chris@42 194 fftw_plan fftw_mpi_plan_dft_r2c_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2,
Chris@42 195 double *in, fftw_complex *out,
Chris@42 196 MPI_Comm comm, unsigned flags);
Chris@42 197 fftw_plan fftw_mpi_plan_dft_r2c(int rnk, const ptrdiff_t *n,
Chris@42 198 double *in, fftw_complex *out,
Chris@42 199 MPI_Comm comm, unsigned flags);
Chris@42 200 fftw_plan fftw_mpi_plan_dft_c2r_2d(ptrdiff_t n0, ptrdiff_t n1,
Chris@42 201 fftw_complex *in, double *out,
Chris@42 202 MPI_Comm comm, unsigned flags);
Chris@42 203 fftw_plan fftw_mpi_plan_dft_c2r_2d(ptrdiff_t n0, ptrdiff_t n1,
Chris@42 204 fftw_complex *in, double *out,
Chris@42 205 MPI_Comm comm, unsigned flags);
Chris@42 206 fftw_plan fftw_mpi_plan_dft_c2r_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2,
Chris@42 207 fftw_complex *in, double *out,
Chris@42 208 MPI_Comm comm, unsigned flags);
Chris@42 209 fftw_plan fftw_mpi_plan_dft_c2r(int rnk, const ptrdiff_t *n,
Chris@42 210 fftw_complex *in, double *out,
Chris@42 211 MPI_Comm comm, unsigned flags);
Chris@42 212 </pre></div>
Chris@42 213
Chris@42 214 <p>Similar to the serial interface (see <a href="Real_002ddata-DFTs.html#Real_002ddata-DFTs">Real-data DFTs</a>), these
Chris@42 215 transform logically n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;n<sub>d-1</sub> real data to/from n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;(n<sub>d-1</sub>/2 + 1) complex
Chris@42 216 data, representing the non-redundant half of the conjugate-symmetry
Chris@42 217 output of a real-input DFT (see <a href="Multi_002ddimensional-Transforms.html#Multi_002ddimensional-Transforms">Multi-dimensional Transforms</a>).
Chris@42 218 However, the real array must be stored within a padded n<sub>0</sub>&nbsp;&times;&nbsp;n<sub>1</sub>&nbsp;&times;&nbsp;n<sub>2</sub>&nbsp;&times;&nbsp;&hellip;&nbsp;&times;&nbsp;[2&nbsp;(n<sub>d-1</sub>/2 + 1)]
Chris@42 219 array (much like the in-place serial r2c transforms, but here for
Chris@42 220 out-of-place transforms as well). Currently, only multi-dimensional
Chris@42 221 (<code>rnk &gt; 1</code>) r2c/c2r transforms are supported (requesting a plan
Chris@42 222 for <code>rnk = 1</code> will yield <code>NULL</code>). As explained above
Chris@42 223 (see <a href="Multi_002ddimensional-MPI-DFTs-of-Real-Data.html#Multi_002ddimensional-MPI-DFTs-of-Real-Data">Multi-dimensional MPI DFTs of Real Data</a>), the data
Chris@42 224 distribution of both the real and complex arrays is given by the
Chris@42 225 &lsquo;<samp>local_size</samp>&rsquo; function called for the dimensions of the
Chris@42 226 <em>complex</em> array. Similar to the other planning functions, the
Chris@42 227 input and output arrays are overwritten when the plan is created
Chris@42 228 except in <code>FFTW_ESTIMATE</code> mode.
Chris@42 229 </p>
Chris@42 230 <p>As for the complex DFTs above, there is an advance interface that
Chris@42 231 allows you to manually specify block sizes and to transform contiguous
Chris@42 232 <code>howmany</code>-tuples of real/complex numbers:
Chris@42 233 </p>
Chris@42 234 <a name="index-fftw_005fmpi_005fplan_005fmany_005fdft_005fr2c"></a>
Chris@42 235 <a name="index-fftw_005fmpi_005fplan_005fmany_005fdft_005fc2r"></a>
Chris@42 236 <div class="example">
Chris@42 237 <pre class="example">fftw_plan fftw_mpi_plan_many_dft_r2c
Chris@42 238 (int rnk, const ptrdiff_t *n, ptrdiff_t howmany,
Chris@42 239 ptrdiff_t iblock, ptrdiff_t oblock,
Chris@42 240 double *in, fftw_complex *out,
Chris@42 241 MPI_Comm comm, unsigned flags);
Chris@42 242 fftw_plan fftw_mpi_plan_many_dft_c2r
Chris@42 243 (int rnk, const ptrdiff_t *n, ptrdiff_t howmany,
Chris@42 244 ptrdiff_t iblock, ptrdiff_t oblock,
Chris@42 245 fftw_complex *in, double *out,
Chris@42 246 MPI_Comm comm, unsigned flags);
Chris@42 247 </pre></div>
Chris@42 248
Chris@42 249 <a name="MPI-r2r-transforms"></a>
Chris@42 250 <h4 class="subsubheading">MPI r2r transforms</h4>
Chris@42 251
Chris@42 252 <a name="index-r2r-4"></a>
Chris@42 253 <p>There are corresponding plan-creation routines for r2r
Chris@42 254 transforms (see <a href="More-DFTs-of-Real-Data.html#More-DFTs-of-Real-Data">More DFTs of Real Data</a>), currently supporting
Chris@42 255 multidimensional (<code>rnk &gt; 1</code>) transforms only (<code>rnk = 1</code> will
Chris@42 256 yield a <code>NULL</code> plan):
Chris@42 257 </p>
Chris@42 258 <div class="example">
Chris@42 259 <pre class="example">fftw_plan fftw_mpi_plan_r2r_2d(ptrdiff_t n0, ptrdiff_t n1,
Chris@42 260 double *in, double *out,
Chris@42 261 MPI_Comm comm,
Chris@42 262 fftw_r2r_kind kind0, fftw_r2r_kind kind1,
Chris@42 263 unsigned flags);
Chris@42 264 fftw_plan fftw_mpi_plan_r2r_3d(ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t n2,
Chris@42 265 double *in, double *out,
Chris@42 266 MPI_Comm comm,
Chris@42 267 fftw_r2r_kind kind0, fftw_r2r_kind kind1, fftw_r2r_kind kind2,
Chris@42 268 unsigned flags);
Chris@42 269 fftw_plan fftw_mpi_plan_r2r(int rnk, const ptrdiff_t *n,
Chris@42 270 double *in, double *out,
Chris@42 271 MPI_Comm comm, const fftw_r2r_kind *kind,
Chris@42 272 unsigned flags);
Chris@42 273 fftw_plan fftw_mpi_plan_many_r2r(int rnk, const ptrdiff_t *n,
Chris@42 274 ptrdiff_t iblock, ptrdiff_t oblock,
Chris@42 275 double *in, double *out,
Chris@42 276 MPI_Comm comm, const fftw_r2r_kind *kind,
Chris@42 277 unsigned flags);
Chris@42 278 </pre></div>
Chris@42 279
Chris@42 280 <p>The parameters are much the same as for the complex DFTs above, except
Chris@42 281 that the arrays are of real numbers (and hence the outputs of the
Chris@42 282 &lsquo;<samp>local_size</samp>&rsquo; data-distribution functions should be interpreted as
Chris@42 283 counts of real rather than complex numbers). Also, the <code>kind</code>
Chris@42 284 parameters specify the r2r kinds along each dimension as for the
Chris@42 285 serial interface (see <a href="Real_002dto_002dReal-Transform-Kinds.html#Real_002dto_002dReal-Transform-Kinds">Real-to-Real Transform Kinds</a>). See <a href="Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms.html#Other-Multi_002ddimensional-Real_002ddata-MPI-Transforms">Other Multi-dimensional Real-data MPI Transforms</a>.
Chris@42 286 </p>
Chris@42 287 <a name="MPI-transposition"></a>
Chris@42 288 <h4 class="subsubheading">MPI transposition</h4>
Chris@42 289 <a name="index-transpose-5"></a>
Chris@42 290
Chris@42 291 <p>FFTW also provides routines to plan a transpose of a distributed
Chris@42 292 <code>n0</code> by <code>n1</code> array of real numbers, or an array of
Chris@42 293 <code>howmany</code>-tuples of real numbers with specified block sizes
Chris@42 294 (see <a href="FFTW-MPI-Transposes.html#FFTW-MPI-Transposes">FFTW MPI Transposes</a>):
Chris@42 295 </p>
Chris@42 296 <a name="index-fftw_005fmpi_005fplan_005ftranspose-1"></a>
Chris@42 297 <a name="index-fftw_005fmpi_005fplan_005fmany_005ftranspose-1"></a>
Chris@42 298 <div class="example">
Chris@42 299 <pre class="example">fftw_plan fftw_mpi_plan_transpose(ptrdiff_t n0, ptrdiff_t n1,
Chris@42 300 double *in, double *out,
Chris@42 301 MPI_Comm comm, unsigned flags);
Chris@42 302 fftw_plan fftw_mpi_plan_many_transpose
Chris@42 303 (ptrdiff_t n0, ptrdiff_t n1, ptrdiff_t howmany,
Chris@42 304 ptrdiff_t block0, ptrdiff_t block1,
Chris@42 305 double *in, double *out, MPI_Comm comm, unsigned flags);
Chris@42 306 </pre></div>
Chris@42 307
Chris@42 308 <a name="index-new_002darray-execution-2"></a>
Chris@42 309 <a name="index-fftw_005fmpi_005fexecute_005fr2r-1"></a>
Chris@42 310 <p>These plans are used with the <code>fftw_mpi_execute_r2r</code> new-array
Chris@42 311 execute function (see <a href="Using-MPI-Plans.html#Using-MPI-Plans">Using MPI Plans</a>), since they count as (rank
Chris@42 312 zero) r2r plans from FFTW&rsquo;s perspective.
Chris@42 313 </p>
Chris@42 314 <hr>
Chris@42 315 <div class="header">
Chris@42 316 <p>
Chris@42 317 Next: <a href="MPI-Wisdom-Communication.html#MPI-Wisdom-Communication" accesskey="n" rel="next">MPI Wisdom Communication</a>, Previous: <a href="MPI-Data-Distribution-Functions.html#MPI-Data-Distribution-Functions" accesskey="p" rel="prev">MPI Data Distribution Functions</a>, Up: <a href="FFTW-MPI-Reference.html#FFTW-MPI-Reference" accesskey="u" rel="up">FFTW MPI Reference</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
Chris@42 318 </div>
Chris@42 319
Chris@42 320
Chris@42 321
Chris@42 322 </body>
Chris@42 323 </html>