annotate src/fftw-3.3.5/dft/simd/common/t3bv_16.c @ 42:2cd0e3b3e1fd

Current fftw source
author Chris Cannam
date Tue, 18 Oct 2016 13:40:26 +0100
parents
children
rev   line source
Chris@42 1 /*
Chris@42 2 * Copyright (c) 2003, 2007-14 Matteo Frigo
Chris@42 3 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
Chris@42 4 *
Chris@42 5 * This program is free software; you can redistribute it and/or modify
Chris@42 6 * it under the terms of the GNU General Public License as published by
Chris@42 7 * the Free Software Foundation; either version 2 of the License, or
Chris@42 8 * (at your option) any later version.
Chris@42 9 *
Chris@42 10 * This program is distributed in the hope that it will be useful,
Chris@42 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
Chris@42 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
Chris@42 13 * GNU General Public License for more details.
Chris@42 14 *
Chris@42 15 * You should have received a copy of the GNU General Public License
Chris@42 16 * along with this program; if not, write to the Free Software
Chris@42 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Chris@42 18 *
Chris@42 19 */
Chris@42 20
Chris@42 21 /* This file was automatically generated --- DO NOT EDIT */
Chris@42 22 /* Generated on Sat Jul 30 16:44:46 EDT 2016 */
Chris@42 23
Chris@42 24 #include "codelet-dft.h"
Chris@42 25
Chris@42 26 #ifdef HAVE_FMA
Chris@42 27
Chris@42 28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3bv_16 -include t3b.h -sign 1 */
Chris@42 29
Chris@42 30 /*
Chris@42 31 * This function contains 98 FP additions, 86 FP multiplications,
Chris@42 32 * (or, 64 additions, 52 multiplications, 34 fused multiply/add),
Chris@42 33 * 70 stack variables, 3 constants, and 32 memory accesses
Chris@42 34 */
Chris@42 35 #include "t3b.h"
Chris@42 36
Chris@42 37 static void t3bv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 38 {
Chris@42 39 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
Chris@42 40 DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
Chris@42 41 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@42 42 {
Chris@42 43 INT m;
Chris@42 44 R *x;
Chris@42 45 x = ii;
Chris@42 46 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@42 47 V T13, Tg, TY, T14, T1A, T1q, T1f, T1x, T1r, T1i, Tt, T16, TB, T1j, T1k;
Chris@42 48 V TH;
Chris@42 49 {
Chris@42 50 V T2, T8, Tu, T3;
Chris@42 51 T2 = LDW(&(W[0]));
Chris@42 52 T8 = LDW(&(W[TWVL * 2]));
Chris@42 53 Tu = LDW(&(W[TWVL * 6]));
Chris@42 54 T3 = LDW(&(W[TWVL * 4]));
Chris@42 55 {
Chris@42 56 V Ty, T1o, Tf, T1b, T7, Tr, TQ, TX, T1g, Tl, To, Tw, TG, Tz, T1p;
Chris@42 57 V T1e, TC;
Chris@42 58 {
Chris@42 59 V T1, T5, Ta, Td;
Chris@42 60 T1 = LD(&(x[0]), ms, &(x[0]));
Chris@42 61 T5 = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
Chris@42 62 Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@42 63 Td = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
Chris@42 64 {
Chris@42 65 V TR, TN, TM, TE, Tb, Tp, Tm, Te, T6, TW, TO, TS;
Chris@42 66 {
Chris@42 67 V TL, Tx, T9, TU, Tc, T4, TV;
Chris@42 68 TL = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@42 69 Tx = VZMULJ(T2, T8);
Chris@42 70 T9 = VZMUL(T2, T8);
Chris@42 71 TR = VZMULJ(T2, Tu);
Chris@42 72 TU = VZMULJ(T8, T3);
Chris@42 73 Tc = VZMUL(T8, T3);
Chris@42 74 T4 = VZMULJ(T2, T3);
Chris@42 75 TN = VZMUL(T2, T3);
Chris@42 76 TV = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@42 77 TM = VZMUL(Tx, TL);
Chris@42 78 Ty = VZMULJ(Tx, T3);
Chris@42 79 TE = VZMUL(Tx, T3);
Chris@42 80 Tb = VZMUL(T9, Ta);
Chris@42 81 Tp = VZMUL(T9, T3);
Chris@42 82 Tm = VZMULJ(T9, T3);
Chris@42 83 Te = VZMUL(Tc, Td);
Chris@42 84 T6 = VZMUL(T4, T5);
Chris@42 85 TW = VZMUL(TU, TV);
Chris@42 86 }
Chris@42 87 TO = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
Chris@42 88 TS = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
Chris@42 89 {
Chris@42 90 V TP, TT, Ti, Tk, Tn, Th, Tq, Tj;
Chris@42 91 Th = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@42 92 Tq = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
Chris@42 93 Tj = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
Chris@42 94 T1o = VSUB(Tb, Te);
Chris@42 95 Tf = VADD(Tb, Te);
Chris@42 96 T1b = VSUB(T1, T6);
Chris@42 97 T7 = VADD(T1, T6);
Chris@42 98 TP = VZMUL(TN, TO);
Chris@42 99 TT = VZMUL(TR, TS);
Chris@42 100 Ti = VZMUL(T2, Th);
Chris@42 101 Tr = VZMUL(Tp, Tq);
Chris@42 102 Tk = VZMUL(T3, Tj);
Chris@42 103 Tn = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@42 104 {
Chris@42 105 V T1c, T1d, Tv, TF;
Chris@42 106 Tv = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
Chris@42 107 TF = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
Chris@42 108 T1c = VSUB(TM, TP);
Chris@42 109 TQ = VADD(TM, TP);
Chris@42 110 T1d = VSUB(TT, TW);
Chris@42 111 TX = VADD(TT, TW);
Chris@42 112 T1g = VSUB(Ti, Tk);
Chris@42 113 Tl = VADD(Ti, Tk);
Chris@42 114 To = VZMUL(Tm, Tn);
Chris@42 115 Tw = VZMUL(Tu, Tv);
Chris@42 116 TG = VZMUL(TE, TF);
Chris@42 117 Tz = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@42 118 T1p = VSUB(T1c, T1d);
Chris@42 119 T1e = VADD(T1c, T1d);
Chris@42 120 TC = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@42 121 }
Chris@42 122 }
Chris@42 123 }
Chris@42 124 }
Chris@42 125 {
Chris@42 126 V T1h, Ts, TA, TD;
Chris@42 127 T13 = VADD(T7, Tf);
Chris@42 128 Tg = VSUB(T7, Tf);
Chris@42 129 T1h = VSUB(To, Tr);
Chris@42 130 Ts = VADD(To, Tr);
Chris@42 131 TY = VSUB(TQ, TX);
Chris@42 132 T14 = VADD(TQ, TX);
Chris@42 133 TA = VZMUL(Ty, Tz);
Chris@42 134 T1A = VFNMS(LDK(KP707106781), T1p, T1o);
Chris@42 135 T1q = VFMA(LDK(KP707106781), T1p, T1o);
Chris@42 136 T1f = VFMA(LDK(KP707106781), T1e, T1b);
Chris@42 137 T1x = VFNMS(LDK(KP707106781), T1e, T1b);
Chris@42 138 TD = VZMUL(T8, TC);
Chris@42 139 T1r = VFMA(LDK(KP414213562), T1g, T1h);
Chris@42 140 T1i = VFNMS(LDK(KP414213562), T1h, T1g);
Chris@42 141 Tt = VSUB(Tl, Ts);
Chris@42 142 T16 = VADD(Tl, Ts);
Chris@42 143 TB = VADD(Tw, TA);
Chris@42 144 T1j = VSUB(Tw, TA);
Chris@42 145 T1k = VSUB(TG, TD);
Chris@42 146 TH = VADD(TD, TG);
Chris@42 147 }
Chris@42 148 }
Chris@42 149 }
Chris@42 150 {
Chris@42 151 V T15, T19, T1l, T1s, TI, T17;
Chris@42 152 T15 = VSUB(T13, T14);
Chris@42 153 T19 = VADD(T13, T14);
Chris@42 154 T1l = VFNMS(LDK(KP414213562), T1k, T1j);
Chris@42 155 T1s = VFMA(LDK(KP414213562), T1j, T1k);
Chris@42 156 TI = VSUB(TB, TH);
Chris@42 157 T17 = VADD(TB, TH);
Chris@42 158 {
Chris@42 159 V T1y, T1t, T1B, T1m;
Chris@42 160 T1y = VADD(T1r, T1s);
Chris@42 161 T1t = VSUB(T1r, T1s);
Chris@42 162 T1B = VSUB(T1i, T1l);
Chris@42 163 T1m = VADD(T1i, T1l);
Chris@42 164 {
Chris@42 165 V T18, T1a, TJ, TZ;
Chris@42 166 T18 = VSUB(T16, T17);
Chris@42 167 T1a = VADD(T16, T17);
Chris@42 168 TJ = VADD(Tt, TI);
Chris@42 169 TZ = VSUB(Tt, TI);
Chris@42 170 {
Chris@42 171 V T1u, T1w, T1z, T1D;
Chris@42 172 T1u = VFNMS(LDK(KP923879532), T1t, T1q);
Chris@42 173 T1w = VFMA(LDK(KP923879532), T1t, T1q);
Chris@42 174 T1z = VFNMS(LDK(KP923879532), T1y, T1x);
Chris@42 175 T1D = VFMA(LDK(KP923879532), T1y, T1x);
Chris@42 176 {
Chris@42 177 V T1n, T1v, T1C, T1E;
Chris@42 178 T1n = VFNMS(LDK(KP923879532), T1m, T1f);
Chris@42 179 T1v = VFMA(LDK(KP923879532), T1m, T1f);
Chris@42 180 T1C = VFMA(LDK(KP923879532), T1B, T1A);
Chris@42 181 T1E = VFNMS(LDK(KP923879532), T1B, T1A);
Chris@42 182 ST(&(x[WS(rs, 8)]), VSUB(T19, T1a), ms, &(x[0]));
Chris@42 183 ST(&(x[0]), VADD(T19, T1a), ms, &(x[0]));
Chris@42 184 ST(&(x[WS(rs, 4)]), VFMAI(T18, T15), ms, &(x[0]));
Chris@42 185 ST(&(x[WS(rs, 12)]), VFNMSI(T18, T15), ms, &(x[0]));
Chris@42 186 {
Chris@42 187 V T10, T12, TK, T11;
Chris@42 188 T10 = VFNMS(LDK(KP707106781), TZ, TY);
Chris@42 189 T12 = VFMA(LDK(KP707106781), TZ, TY);
Chris@42 190 TK = VFNMS(LDK(KP707106781), TJ, Tg);
Chris@42 191 T11 = VFMA(LDK(KP707106781), TJ, Tg);
Chris@42 192 ST(&(x[WS(rs, 15)]), VFNMSI(T1w, T1v), ms, &(x[WS(rs, 1)]));
Chris@42 193 ST(&(x[WS(rs, 1)]), VFMAI(T1w, T1v), ms, &(x[WS(rs, 1)]));
Chris@42 194 ST(&(x[WS(rs, 9)]), VFMAI(T1u, T1n), ms, &(x[WS(rs, 1)]));
Chris@42 195 ST(&(x[WS(rs, 7)]), VFNMSI(T1u, T1n), ms, &(x[WS(rs, 1)]));
Chris@42 196 ST(&(x[WS(rs, 3)]), VFNMSI(T1E, T1D), ms, &(x[WS(rs, 1)]));
Chris@42 197 ST(&(x[WS(rs, 13)]), VFMAI(T1E, T1D), ms, &(x[WS(rs, 1)]));
Chris@42 198 ST(&(x[WS(rs, 11)]), VFNMSI(T1C, T1z), ms, &(x[WS(rs, 1)]));
Chris@42 199 ST(&(x[WS(rs, 5)]), VFMAI(T1C, T1z), ms, &(x[WS(rs, 1)]));
Chris@42 200 ST(&(x[WS(rs, 2)]), VFMAI(T12, T11), ms, &(x[0]));
Chris@42 201 ST(&(x[WS(rs, 14)]), VFNMSI(T12, T11), ms, &(x[0]));
Chris@42 202 ST(&(x[WS(rs, 10)]), VFMAI(T10, TK), ms, &(x[0]));
Chris@42 203 ST(&(x[WS(rs, 6)]), VFNMSI(T10, TK), ms, &(x[0]));
Chris@42 204 }
Chris@42 205 }
Chris@42 206 }
Chris@42 207 }
Chris@42 208 }
Chris@42 209 }
Chris@42 210 }
Chris@42 211 }
Chris@42 212 VLEAVE();
Chris@42 213 }
Chris@42 214
Chris@42 215 static const tw_instr twinstr[] = {
Chris@42 216 VTW(0, 1),
Chris@42 217 VTW(0, 3),
Chris@42 218 VTW(0, 9),
Chris@42 219 VTW(0, 15),
Chris@42 220 {TW_NEXT, VL, 0}
Chris@42 221 };
Chris@42 222
Chris@42 223 static const ct_desc desc = { 16, XSIMD_STRING("t3bv_16"), twinstr, &GENUS, {64, 52, 34, 0}, 0, 0, 0 };
Chris@42 224
Chris@42 225 void XSIMD(codelet_t3bv_16) (planner *p) {
Chris@42 226 X(kdft_dit_register) (p, t3bv_16, &desc);
Chris@42 227 }
Chris@42 228 #else /* HAVE_FMA */
Chris@42 229
Chris@42 230 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -twiddle-log3 -precompute-twiddles -no-generate-bytw -n 16 -name t3bv_16 -include t3b.h -sign 1 */
Chris@42 231
Chris@42 232 /*
Chris@42 233 * This function contains 98 FP additions, 64 FP multiplications,
Chris@42 234 * (or, 94 additions, 60 multiplications, 4 fused multiply/add),
Chris@42 235 * 51 stack variables, 3 constants, and 32 memory accesses
Chris@42 236 */
Chris@42 237 #include "t3b.h"
Chris@42 238
Chris@42 239 static void t3bv_16(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
Chris@42 240 {
Chris@42 241 DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
Chris@42 242 DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
Chris@42 243 DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
Chris@42 244 {
Chris@42 245 INT m;
Chris@42 246 R *x;
Chris@42 247 x = ii;
Chris@42 248 for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(16, rs)) {
Chris@42 249 V T1, T8, T9, Tl, Ti, TE, T4, Ta, TO, TV, Td, Tm, TA, TH, Ts;
Chris@42 250 T1 = LDW(&(W[0]));
Chris@42 251 T8 = LDW(&(W[TWVL * 2]));
Chris@42 252 T9 = VZMUL(T1, T8);
Chris@42 253 Tl = VZMULJ(T1, T8);
Chris@42 254 Ti = LDW(&(W[TWVL * 6]));
Chris@42 255 TE = VZMULJ(T1, Ti);
Chris@42 256 T4 = LDW(&(W[TWVL * 4]));
Chris@42 257 Ta = VZMULJ(T9, T4);
Chris@42 258 TO = VZMUL(T8, T4);
Chris@42 259 TV = VZMULJ(T1, T4);
Chris@42 260 Td = VZMUL(T9, T4);
Chris@42 261 Tm = VZMULJ(Tl, T4);
Chris@42 262 TA = VZMUL(T1, T4);
Chris@42 263 TH = VZMULJ(T8, T4);
Chris@42 264 Ts = VZMUL(Tl, T4);
Chris@42 265 {
Chris@42 266 V TY, T1q, TR, T1r, T1m, T1n, TL, TZ, T1f, T1g, T1h, Th, T11, T1i, T1j;
Chris@42 267 V T1k, Tw, T12, TU, TX, TW;
Chris@42 268 TU = LD(&(x[0]), ms, &(x[0]));
Chris@42 269 TW = LD(&(x[WS(rs, 8)]), ms, &(x[0]));
Chris@42 270 TX = VZMUL(TV, TW);
Chris@42 271 TY = VSUB(TU, TX);
Chris@42 272 T1q = VADD(TU, TX);
Chris@42 273 {
Chris@42 274 V TN, TQ, TM, TP;
Chris@42 275 TM = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
Chris@42 276 TN = VZMUL(T9, TM);
Chris@42 277 TP = LD(&(x[WS(rs, 12)]), ms, &(x[0]));
Chris@42 278 TQ = VZMUL(TO, TP);
Chris@42 279 TR = VSUB(TN, TQ);
Chris@42 280 T1r = VADD(TN, TQ);
Chris@42 281 }
Chris@42 282 {
Chris@42 283 V Tz, TJ, TC, TG, TD, TK;
Chris@42 284 {
Chris@42 285 V Ty, TI, TB, TF;
Chris@42 286 Ty = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
Chris@42 287 Tz = VZMUL(Tl, Ty);
Chris@42 288 TI = LD(&(x[WS(rs, 6)]), ms, &(x[0]));
Chris@42 289 TJ = VZMUL(TH, TI);
Chris@42 290 TB = LD(&(x[WS(rs, 10)]), ms, &(x[0]));
Chris@42 291 TC = VZMUL(TA, TB);
Chris@42 292 TF = LD(&(x[WS(rs, 14)]), ms, &(x[0]));
Chris@42 293 TG = VZMUL(TE, TF);
Chris@42 294 }
Chris@42 295 T1m = VADD(Tz, TC);
Chris@42 296 T1n = VADD(TG, TJ);
Chris@42 297 TD = VSUB(Tz, TC);
Chris@42 298 TK = VSUB(TG, TJ);
Chris@42 299 TL = VMUL(LDK(KP707106781), VSUB(TD, TK));
Chris@42 300 TZ = VMUL(LDK(KP707106781), VADD(TD, TK));
Chris@42 301 }
Chris@42 302 {
Chris@42 303 V T3, Tf, T6, Tc, T7, Tg;
Chris@42 304 {
Chris@42 305 V T2, Te, T5, Tb;
Chris@42 306 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
Chris@42 307 T3 = VZMUL(T1, T2);
Chris@42 308 Te = LD(&(x[WS(rs, 13)]), ms, &(x[WS(rs, 1)]));
Chris@42 309 Tf = VZMUL(Td, Te);
Chris@42 310 T5 = LD(&(x[WS(rs, 9)]), ms, &(x[WS(rs, 1)]));
Chris@42 311 T6 = VZMUL(T4, T5);
Chris@42 312 Tb = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
Chris@42 313 Tc = VZMUL(Ta, Tb);
Chris@42 314 }
Chris@42 315 T1f = VADD(T3, T6);
Chris@42 316 T1g = VADD(Tc, Tf);
Chris@42 317 T1h = VSUB(T1f, T1g);
Chris@42 318 T7 = VSUB(T3, T6);
Chris@42 319 Tg = VSUB(Tc, Tf);
Chris@42 320 Th = VFNMS(LDK(KP382683432), Tg, VMUL(LDK(KP923879532), T7));
Chris@42 321 T11 = VFMA(LDK(KP382683432), T7, VMUL(LDK(KP923879532), Tg));
Chris@42 322 }
Chris@42 323 {
Chris@42 324 V Tk, Tu, To, Tr, Tp, Tv;
Chris@42 325 {
Chris@42 326 V Tj, Tt, Tn, Tq;
Chris@42 327 Tj = LD(&(x[WS(rs, 15)]), ms, &(x[WS(rs, 1)]));
Chris@42 328 Tk = VZMUL(Ti, Tj);
Chris@42 329 Tt = LD(&(x[WS(rs, 11)]), ms, &(x[WS(rs, 1)]));
Chris@42 330 Tu = VZMUL(Ts, Tt);
Chris@42 331 Tn = LD(&(x[WS(rs, 7)]), ms, &(x[WS(rs, 1)]));
Chris@42 332 To = VZMUL(Tm, Tn);
Chris@42 333 Tq = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
Chris@42 334 Tr = VZMUL(T8, Tq);
Chris@42 335 }
Chris@42 336 T1i = VADD(Tk, To);
Chris@42 337 T1j = VADD(Tr, Tu);
Chris@42 338 T1k = VSUB(T1i, T1j);
Chris@42 339 Tp = VSUB(Tk, To);
Chris@42 340 Tv = VSUB(Tr, Tu);
Chris@42 341 Tw = VFMA(LDK(KP923879532), Tp, VMUL(LDK(KP382683432), Tv));
Chris@42 342 T12 = VFNMS(LDK(KP382683432), Tp, VMUL(LDK(KP923879532), Tv));
Chris@42 343 }
Chris@42 344 {
Chris@42 345 V T1p, T1v, T1u, T1w;
Chris@42 346 {
Chris@42 347 V T1l, T1o, T1s, T1t;
Chris@42 348 T1l = VMUL(LDK(KP707106781), VSUB(T1h, T1k));
Chris@42 349 T1o = VSUB(T1m, T1n);
Chris@42 350 T1p = VBYI(VSUB(T1l, T1o));
Chris@42 351 T1v = VBYI(VADD(T1o, T1l));
Chris@42 352 T1s = VSUB(T1q, T1r);
Chris@42 353 T1t = VMUL(LDK(KP707106781), VADD(T1h, T1k));
Chris@42 354 T1u = VSUB(T1s, T1t);
Chris@42 355 T1w = VADD(T1s, T1t);
Chris@42 356 }
Chris@42 357 ST(&(x[WS(rs, 6)]), VADD(T1p, T1u), ms, &(x[0]));
Chris@42 358 ST(&(x[WS(rs, 14)]), VSUB(T1w, T1v), ms, &(x[0]));
Chris@42 359 ST(&(x[WS(rs, 10)]), VSUB(T1u, T1p), ms, &(x[0]));
Chris@42 360 ST(&(x[WS(rs, 2)]), VADD(T1v, T1w), ms, &(x[0]));
Chris@42 361 }
Chris@42 362 {
Chris@42 363 V T1z, T1D, T1C, T1E;
Chris@42 364 {
Chris@42 365 V T1x, T1y, T1A, T1B;
Chris@42 366 T1x = VADD(T1q, T1r);
Chris@42 367 T1y = VADD(T1m, T1n);
Chris@42 368 T1z = VSUB(T1x, T1y);
Chris@42 369 T1D = VADD(T1x, T1y);
Chris@42 370 T1A = VADD(T1f, T1g);
Chris@42 371 T1B = VADD(T1i, T1j);
Chris@42 372 T1C = VBYI(VSUB(T1A, T1B));
Chris@42 373 T1E = VADD(T1A, T1B);
Chris@42 374 }
Chris@42 375 ST(&(x[WS(rs, 12)]), VSUB(T1z, T1C), ms, &(x[0]));
Chris@42 376 ST(&(x[0]), VADD(T1D, T1E), ms, &(x[0]));
Chris@42 377 ST(&(x[WS(rs, 4)]), VADD(T1z, T1C), ms, &(x[0]));
Chris@42 378 ST(&(x[WS(rs, 8)]), VSUB(T1D, T1E), ms, &(x[0]));
Chris@42 379 }
Chris@42 380 {
Chris@42 381 V TT, T15, T14, T16;
Chris@42 382 {
Chris@42 383 V Tx, TS, T10, T13;
Chris@42 384 Tx = VSUB(Th, Tw);
Chris@42 385 TS = VSUB(TL, TR);
Chris@42 386 TT = VBYI(VSUB(Tx, TS));
Chris@42 387 T15 = VBYI(VADD(TS, Tx));
Chris@42 388 T10 = VSUB(TY, TZ);
Chris@42 389 T13 = VSUB(T11, T12);
Chris@42 390 T14 = VSUB(T10, T13);
Chris@42 391 T16 = VADD(T10, T13);
Chris@42 392 }
Chris@42 393 ST(&(x[WS(rs, 5)]), VADD(TT, T14), ms, &(x[WS(rs, 1)]));
Chris@42 394 ST(&(x[WS(rs, 13)]), VSUB(T16, T15), ms, &(x[WS(rs, 1)]));
Chris@42 395 ST(&(x[WS(rs, 11)]), VSUB(T14, TT), ms, &(x[WS(rs, 1)]));
Chris@42 396 ST(&(x[WS(rs, 3)]), VADD(T15, T16), ms, &(x[WS(rs, 1)]));
Chris@42 397 }
Chris@42 398 {
Chris@42 399 V T19, T1d, T1c, T1e;
Chris@42 400 {
Chris@42 401 V T17, T18, T1a, T1b;
Chris@42 402 T17 = VADD(TY, TZ);
Chris@42 403 T18 = VADD(Th, Tw);
Chris@42 404 T19 = VADD(T17, T18);
Chris@42 405 T1d = VSUB(T17, T18);
Chris@42 406 T1a = VADD(TR, TL);
Chris@42 407 T1b = VADD(T11, T12);
Chris@42 408 T1c = VBYI(VADD(T1a, T1b));
Chris@42 409 T1e = VBYI(VSUB(T1b, T1a));
Chris@42 410 }
Chris@42 411 ST(&(x[WS(rs, 15)]), VSUB(T19, T1c), ms, &(x[WS(rs, 1)]));
Chris@42 412 ST(&(x[WS(rs, 7)]), VADD(T1d, T1e), ms, &(x[WS(rs, 1)]));
Chris@42 413 ST(&(x[WS(rs, 1)]), VADD(T19, T1c), ms, &(x[WS(rs, 1)]));
Chris@42 414 ST(&(x[WS(rs, 9)]), VSUB(T1d, T1e), ms, &(x[WS(rs, 1)]));
Chris@42 415 }
Chris@42 416 }
Chris@42 417 }
Chris@42 418 }
Chris@42 419 VLEAVE();
Chris@42 420 }
Chris@42 421
Chris@42 422 static const tw_instr twinstr[] = {
Chris@42 423 VTW(0, 1),
Chris@42 424 VTW(0, 3),
Chris@42 425 VTW(0, 9),
Chris@42 426 VTW(0, 15),
Chris@42 427 {TW_NEXT, VL, 0}
Chris@42 428 };
Chris@42 429
Chris@42 430 static const ct_desc desc = { 16, XSIMD_STRING("t3bv_16"), twinstr, &GENUS, {94, 60, 4, 0}, 0, 0, 0 };
Chris@42 431
Chris@42 432 void XSIMD(codelet_t3bv_16) (planner *p) {
Chris@42 433 X(kdft_dit_register) (p, t3bv_16, &desc);
Chris@42 434 }
Chris@42 435 #endif /* HAVE_FMA */