annotate Lectures/Lec1 - Physics of Sound/Lec1 - Physics of Sound.tex @ 17:898873c7bb2b tip

This time?
author Michael T iMac <Michael.Terrell@eecs.qmul.ac.uk>
date Thu, 15 May 2014 14:14:41 +0100
parents 5a9b7fc25eec
children
rev   line source
Michael@0 1 \documentclass[handout]{beamer}
Michael@0 2
Michael@0 3 \usepackage{../C4DMlecturetheme}
Michael@0 4
Michael@0 5 \usecolortheme{beaver}
Michael@0 6
Michael@0 7 % Set up the lecture details here
Michael@0 8 \setlecturedetails
Michael@0 9 %COURSE DETAILS:
Michael@0 10 {Sound Recording and Production} % COURSE TITLE
Michael@0 11 {ECS614U/ECS749P} % COURSE CODE
Michael@0 12 %
Michael@0 13 %LECTURER DETAILS:
Michael@0 14 {Michael Terrell} % LECTURER NAME(s)
Michael@0 15 {michael.terrell@eecs.qmul.ac.uk} % LECTURER EMAIL(s)
Michael@0 16 {http://qmplus.qmul.ac.uk/course/view.php?id=3243} % COURSE WEBPAGE URL
Michael@0 17 %
Michael@0 18 %LECTURE DETAILS:
Michael@0 19 {1} % LECTURE NUMBER
Michael@0 20 {The Physics of Sound} % LECTURE TITLE
Michael@0 21
Michael@0 22
Michael@0 23 \institute[C4DM]%
Michael@0 24 {Centre for Digital Music\\
Michael@0 25 School of Electronic Engineering and Computer Science\\
Michael@0 26 Queen Mary University of London}
Michael@0 27
Michael@0 28 \date[Semester 1, 2013--14]{Semester 1, 2013--14}
Michael@0 29
Michael@0 30 %\pgfdeclareimage[height=5mm]{theLogo}{QMULlogo}
Michael@0 31 %\logo{\pgfuseimage{theLogo}}
Michael@0 32
Michael@0 33 \beamerdefaultoverlayspecification{<+->}
Michael@0 34
Michael@0 35
Michael@0 36 \begin{document}
Michael@0 37 \section{Lecture \lecturenumber}
Michael@0 38 \subsection{ \lecturetitle}
Michael@0 39 \maketitle
Michael@0 40
Michael@0 41
Michael@0 42 \separator{Course Overview}
Michael@0 43
Michael@0 44 \begin{frame}
Michael@0 45 \frametitle{Lectures}
Michael@0 46 {\small
Michael@0 47 \begin{columns}
Michael@0 48
Michael@0 49 \column{4.5cm}
Michael@0 50 \begin{enumerate}
Michael@0 51 \item The Physics of Sound.
Michael@0 52 \item Microphones.
Michael@0 53 \item The Audio Chain.
Michael@0 54 \item MIDI.
Michael@0 55 \item Sound Design.
Michael@0 56 \item Mixing: Gain.
Michael@0 57 \end{enumerate}
Michael@0 58
Michael@0 59
Michael@0 60 \column{4.5cm}
Michael@0 61 \begin{enumerate}\setcounter{enumi}{6}
Michael@0 62 \item Mixing: Delay.
Michael@0 63 \item Mixing: Dynamics.
Michael@0 64 \item Sound Reproduction.
Michael@0 65 \item Psychoacoustics.
Michael@0 66 \item Mastering.
Michael@0 67 \item
Michael@0 68 \end{enumerate}
Michael@0 69
Michael@0 70 \end{columns}
Michael@0 71 }
Michael@0 72
Michael@0 73 \end{frame}
Michael@0 74
Michael@0 75 \begin{frame}
Michael@0 76 \frametitle{Coursework}
Michael@0 77 \begin{enumerate}\itemsep12pt
Michael@0 78 \item Microphone project: {\bf 5\%} (11/10/2013).
Michael@4 79 \item Apple loops project: {\bf 10\%} (1/11/2013).
Michael@0 80 \item Soundscape concept document: {\bf 30\%} (22/11/2013).
Michael@0 81 \item Soundscape audio and technical document: {\bf 55\%} (13/12/2013).
Michael@0 82 \end{enumerate}
Michael@0 83 \end{frame}
Michael@0 84
Michael@0 85 \separator{The Physics of Sound}
Michael@0 86
Michael@0 87 \begin{frame}
Michael@0 88 \frametitle{What is a sound?}
Michael@0 89 \begin{itemize}\itemsep8pt
Michael@0 90 \item A sound is a pressure wave.
Michael@0 91 \item The pressure wave travels through an acoustic medium, i.e. air.
Michael@0 92 \item The pressure wave consisting of compression and rarefaction.
Michael@0 93 \item In the compression and rarefaction parts of the wave, the particles which form the acoustic medium are respectively squashed together and pulled apart.
Michael@0 94 \item \href{http://illuminations.nctm.org/ActivityDetail.aspx?id=37}{\textit{Vibrating string animation}.}
Michael@0 95 \end{itemize}
Michael@0 96 \end{frame}
Michael@0 97
Michael@0 98 \begin{frame}
Michael@0 99 \frametitle{The waveform}
Michael@0 100 \begin{itemize}\itemsep12pt
Michael@0 101 \item A waveform is a graphical representation of a sound wave.
Michael@0 102 \end{itemize}
Michael@0 103 \begin{center}
Michael@0 104 \includegraphics[width = 0.9 \textwidth]{Figures/waveform.pdf}
Michael@0 105 \end{center}
Michael@0 106 \end{frame}
Michael@0 107
Michael@0 108 \begin{frame}
Michael@0 109 \frametitle{The waveform}
Michael@0 110 \begin{itemize}
Michael@0 111 \item A waveform plot can represent one of two things:
Michael@0 112 \setlength{\parskip}{0.25cm}
Michael@0 113 \begin{enumerate}\itemsep8pt
Michael@0 114 \item The waveform at a given point in space as it changes with time.
Michael@0 115 \item The waveform at a given moment in time as it changes in space.
Michael@0 116 \end{enumerate}
Michael@0 117 \item \href{http://www.kettering.edu/physics/drussell/Demos.html}{\textit{Waves in space and time}.}
Michael@0 118 \item When listening to a sound we are sensing the changes in pressure with time.
Michael@0 119 \end{itemize}
Michael@0 120 \end{frame}
Michael@0 121
Michael@0 122 \begin{frame}
Michael@0 123 \frametitle{Sound wave properties}
Michael@0 124 \begin{itemize}\itemsep12pt
Michael@0 125 \item Amplitude, \textbf{A} (Pa).
Michael@0 126 \item Frequency, \textbf{f} (Hz): number of cycles per second.
Michael@0 127 \item Time period, \textbf{T} (s): the time for one cycle.
Michael@0 128 \item Wavelength, $\mathbf{\lambda}$ (m): the distance taken up by one cycle.
Michael@0 129 \item Speed \textbf{c} (m/s): the speed at which the wave travels.
Michael@0 130 \end{itemize}
Michael@0 131 \end{frame}
Michael@0 132
Michael@0 133 \begin{frame}
Michael@0 134 \frametitle{A waveform versus time}
Michael@0 135 \setlength{\parskip}{0.5cm}
Michael@0 136 \begin{center}
Michael@0 137 \includegraphics[width = \textwidth]{Figures/100HzVsTime.eps}
Michael@0 138 \end{center}
Michael@0 139 \end{frame}
Michael@0 140
Michael@0 141 \begin{frame}
Michael@0 142 \frametitle{A waveform versus distance}
Michael@0 143 \setlength{\parskip}{0.5cm}
Michael@0 144 \begin{center}
Michael@0 145 \includegraphics[width = \textwidth]{Figures/100HzVsDistance.eps}
Michael@0 146 \end{center}
Michael@0 147 \end{frame}
Michael@0 148
Michael@0 149 \begin{frame}
Michael@0 150 \frametitle{The relationship between time and space}
Michael@0 151 \vspace{-0.75cm}
Michael@0 152 \begin{center}
Michael@0 153 \begin{equation*}
Michael@0 154 \mathbf {TIME = \frac{1}{FREQUENCY} \: \: \: \: \: \: \: \: \: \: \Longrightarrow } \: \: \: \: \mathbf {T = \frac{1}{f}}
Michael@0 155 \end{equation*}
Michael@0 156
Michael@0 157 \vspace{-0.25cm}
Michael@0 158
Michael@0 159 \begin{equation*}
Michael@0 160 \mathbf {WAVELENGTH \times FREQUENCY = SPEED \: \: \: \: \Longrightarrow} \: \: \: \: \mathbf {\lambda \times f = c}
Michael@0 161 \end{equation*}
Michael@0 162
Michael@0 163 \vspace{-0.25cm}
Michael@0 164
Michael@0 165 \begin{equation*}
Michael@0 166 \mathbf {DISTANCE = SPEED\times TIME \: \: \: \: \Longrightarrow} \: \: \: \: \mathbf {d = c \times t}
Michael@0 167 \end{equation*}
Michael@0 168
Michael@0 169 \vspace{0.5cm}
Michael@0 170
Michael@0 171 (The speed of sound in air (\textbf{c}) is 343 m/s)
Michael@0 172
Michael@0 173 \end{center}
Michael@0 174 \end{frame}
Michael@0 175
Michael@0 176 \begin{frame}
Michael@0 177 \frametitle{Complex waveforms}
Michael@0 178 \begin{itemize}\itemsep16pt
Michael@0 179 \item Real musical sounds are more complex than the sine waves shown so far.
Michael@0 180 \item But...we can think of a complex waveform as a summation of many different sine waves of different amplitude, frequency (and phase).
Michael@0 181 \end{itemize}
Michael@0 182 \end{frame}
Michael@0 183
Michael@0 184
Michael@0 185 \begin{frame}
Michael@0 186 \frametitle{Complex waveforms}
Michael@0 187 \vspace{0.5cm}
Michael@0 188 This complex waveform...
Michael@0 189 \vspace{-0.2cm}
Michael@0 190 \begin{center}
Michael@0 191 \includegraphics[width = \textwidth]{Figures/SummedWave.eps}
Michael@0 192 \end{center}
Michael@0 193
Michael@0 194 \end{frame}
Michael@0 195
Michael@0 196 \begin{frame}
Michael@0 197 \frametitle{Complex waveforms}
Michael@0 198 \vspace{0.5cm}
Michael@0 199 ...is made by summing these six simple waveforems.
Michael@0 200 \vspace{-0.2cm}
Michael@0 201 \begin{center}
Michael@0 202 \includegraphics[width = \textwidth]{Figures/IndividualWaves.eps}
Michael@0 203 \end{center}
Michael@0 204
Michael@0 205 \end{frame}
Michael@0 206
Michael@0 207 \begin{frame}
Michael@0 208 \frametitle{Sound Features}
Michael@0 209 \begin{itemize}\itemsep10pt
Michael@0 210 \item There are many different features that we can use to describe a sound.
Michael@0 211 \item Today we will consider two types of sound feature:
Michael@0 212 \vspace{0.25cm}
Michael@0 213 \begin{itemize}\itemsep8pt
Michael@0 214 \item Level features.
Michael@0 215 \item Spectral features.
Michael@0 216 \end{itemize}
Michael@0 217 \end{itemize}
Michael@0 218 \end{frame}
Michael@0 219
Michael@0 220 \begin{frame}
Michael@0 221 \frametitle{Level Features}
Michael@0 222 \vspace{0.2cm}
Michael@0 223 There are two key level features: {\bf RMS} and {\bf Peak} level.
Michael@0 224 \vspace{-0.2cm}
Michael@0 225 \begin{center}
Michael@0 226 \includegraphics[width = \textwidth]{Figures/RMSandPeak.eps}
Michael@0 227 \end{center}
Michael@0 228 \end{frame}
Michael@0 229
Michael@0 230 \begin{frame}
Michael@0 231 \frametitle{Level Features: dynamics}
Michael@0 232 \setlength{\parskip}{0.5cm}
Michael@0 233 \begin{itemize}\itemsep10pt
Michael@0 234 \item The term {\bf dynamics} is used to describe how much a sound varies over time.
Michael@0 235 \setlength{\parskip}{0.25cm}
Michael@0 236 \begin{itemize}\itemsep6pt
Michael@0 237 \item \textbf{Transient sounds} - large fluctuations in amplitude, e.g. percussion.
Michael@0 238 \item \textbf{Steady-state sounds} - minimal fluctuations in amplitude, e.g. constant sine-wave.
Michael@0 239 \end{itemize}
Michael@0 240 \item The {\bf dynamics} are quantified using the {\bf Crest Factor}, which is the logarithmic ratio of {\bf Peak} and {\bf RMS} levels:
Michael@0 241 \end{itemize}
Michael@0 242 \begin{equation}
Michael@0 243 \mathbf{Crest \ \ Factor} = 20\log_{10}\left(\frac{\mathbf{Peak}}{\mathbf{RMS}}\right)
Michael@0 244 \end{equation}
Michael@0 245 \end{frame}
Michael@0 246
Michael@0 247 \begin{frame}
Michael@0 248 \frametitle{Level Features: dynamics}
Michael@0 249 \begin{center}
Michael@0 250 \includegraphics[width = \textwidth]{Figures/CF_SineWave.eps}
Michael@0 251 \end{center}
Michael@0 252 \end{frame}
Michael@0 253
Michael@0 254 \begin{frame}
Michael@0 255 \frametitle{Level Features: dynamics}
Michael@0 256 \begin{center}
Michael@0 257 \includegraphics[width = \textwidth]{Figures/CF_Piano.eps}
Michael@0 258 \end{center}
Michael@0 259 \end{frame}
Michael@0 260
Michael@0 261 \begin{frame}
Michael@0 262 \frametitle{Level Features: dynamics}
Michael@0 263 \begin{center}
Michael@0 264 \includegraphics[width = \textwidth]{Figures/CF_Drum.eps}
Michael@0 265 \end{center}
Michael@0 266 \end{frame}
Michael@0 267
Michael@0 268 \begin{frame}
Michael@0 269 \frametitle{Level Features: dynamics}
Michael@0 270 \begin{center}
Michael@0 271 \includegraphics[width = \textwidth]{Figures/CF_Clarinet.eps}
Michael@0 272 \end{center}
Michael@0 273 \end{frame}
Michael@0 274
Michael@0 275 \begin{frame}
Michael@0 276 \frametitle{Level Features: dynamics}
Michael@0 277 \begin{center}
Michael@0 278 \includegraphics[width = \textwidth]{Figures/CF_Voice.eps}
Michael@0 279 \end{center}
Michael@0 280 \end{frame}
Michael@0 281
Michael@0 282 \begin{frame}
Michael@0 283 \frametitle{Level Features: dynamics}
Michael@0 284 \setlength{\parskip}{0.5cm}
Michael@0 285 \begin{itemize}\itemsep10pt
Michael@0 286 \item The {\bf dynamics} are quantified using the {\bf Crest Factor}, which is the logarithmic ratio of {\bf Peak} and {\bf RMS} levels:
Michael@0 287 \begin{equation}
Michael@0 288 \mathbf{Crest \ \ Factor} = 20\log_{10}\left(\frac{\mathbf{Peak}}{\mathbf{RMS}}\right)
Michael@0 289 \end{equation}
Michael@0 290 \item High Crest Factor $\rightarrow$ Transient.
Michael@0 291 \item Low Crest Factor $\rightarrow$ Steady-state.
Michael@0 292 \end{itemize}
Michael@0 293 \end{frame}
Michael@0 294
Michael@0 295
Michael@0 296 \begin{frame}
Michael@0 297 \frametitle{Spectral Features}
Michael@0 298 \vspace{0.2cm}
Michael@0 299 The frequency spectrum of a sound tell us how the energy within the sound is divided into different frequencies.
Michael@0 300 \vspace{-0.15cm}
Michael@0 301 \begin{center}
Michael@0 302 \includegraphics[width = \textwidth]{Figures/Spectrum.eps}
Michael@0 303 \end{center}
Michael@0 304 \end{frame}
Michael@0 305
Michael@0 306 \begin{frame}
Michael@0 307 \frametitle{Spectral Features}
Michael@0 308 \vspace{0.2cm}
Michael@0 309 The spikes on the spectrum relate to the individual sine waves from which the sound was composed:
Michael@0 310 \vspace{-0.2cm}
Michael@0 311 \begin{center}
Michael@0 312 \includegraphics[width = \textwidth]{Figures/FrequencyMulti.eps}
Michael@0 313 \end{center}
Michael@0 314 \end{frame}
Michael@0 315
Michael@0 316 \begin{frame}
Michael@0 317 \frametitle{Spectral Features}
Michael@0 318 \vspace{0.2cm}
Michael@0 319 The spikes on the spectrum relate to the individual sine waves from which the sound was composed:
Michael@0 320 \vspace{-0.2cm}
Michael@0 321 \begin{center}
Michael@0 322 \includegraphics[width = \textwidth]{Figures/FrequencyMultiP1.eps}
Michael@0 323 \end{center}
Michael@0 324 \end{frame}
Michael@0 325 \begin{frame}
Michael@0 326 \frametitle{Spectral Features}
Michael@0 327 \vspace{0.2cm}
Michael@0 328 The spikes on the spectrum relate to the individual sine waves from which the sound was composed:
Michael@0 329 \vspace{-0.2cm}
Michael@0 330 \begin{center}
Michael@0 331 \includegraphics[width = \textwidth]{Figures/FrequencyMultiP2.eps}
Michael@0 332 \end{center}
Michael@0 333 \end{frame}
Michael@0 334 \begin{frame}
Michael@0 335 \frametitle{Spectral Features}
Michael@0 336 \vspace{0.2cm}
Michael@0 337 The spikes on the spectrum relate to the individual sine waves from which the sound was composed:
Michael@0 338 \vspace{-0.2cm}
Michael@0 339 \begin{center}
Michael@0 340 \includegraphics[width = \textwidth]{Figures/FrequencyMultiP3.eps}
Michael@0 341 \end{center}
Michael@0 342 \end{frame}
Michael@0 343 \begin{frame}
Michael@0 344 \frametitle{Spectral Features}
Michael@0 345 \vspace{0.2cm}
Michael@0 346 The spikes on the spectrum relate to the individual sine waves from which the sound was composed:
Michael@0 347 \vspace{-0.2cm}
Michael@0 348 \begin{center}
Michael@0 349 \includegraphics[width = \textwidth]{Figures/FrequencyMultiP4.eps}
Michael@0 350 \end{center}
Michael@0 351 \end{frame}
Michael@0 352 \begin{frame}
Michael@0 353 \frametitle{Spectral Features}
Michael@0 354 \vspace{0.2cm}
Michael@0 355 The spikes on the spectrum relate to the individual sine waves from which the sound was composed:
Michael@0 356 \vspace{-0.2cm}
Michael@0 357 \begin{center}
Michael@0 358 \includegraphics[width = \textwidth]{Figures/FrequencyMultiP5.eps}
Michael@0 359 \end{center}
Michael@0 360 \end{frame}
Michael@0 361 \begin{frame}
Michael@0 362 \frametitle{Spectral Features}
Michael@0 363 \vspace{0.2cm}
Michael@0 364 The spikes on the spectrum relate to the individual sine waves from which the sound was composed:
Michael@0 365 \vspace{-0.2cm}
Michael@0 366 \begin{center}
Michael@0 367 \includegraphics[width = \textwidth]{Figures/FrequencyMultiP6.eps}
Michael@0 368 \end{center}
Michael@0 369 \end{frame}
Michael@0 370
Michael@1 371 \separator{Music Production}
Michael@1 372
Michael@1 373 \begin{frame}
Michael@1 374 \frametitle{Music Production}
Michael@1 375 \begin{center}
Michael@1 376 \includegraphics[width = \textwidth]{Figures/mixingCartoon.pdf}
Michael@1 377 \end{center}
Michael@1 378 \end{frame}
Michael@1 379
Michael@1 380
Michael@1 381 \separator{Wave Phase}
Michael@1 382
Michael@0 383 \begin{frame}
Michael@0 384 \frametitle{Wave phase}
Michael@0 385 \begin{itemize}
Michael@0 386 \item The position within a cycle of a wave is called the phase and it is defined as a fraction of the wavelength.
Michael@0 387 \end{itemize}
Michael@0 388 \begin{center}
Michael@0 389 \includegraphics[width = 0.85 \textwidth]{Figures/phasefigure.pdf}
Michael@0 390 \end{center}
Michael@0 391 \end{frame}
Michael@0 392
Michael@0 393 \begin{frame}
Michael@0 394 \frametitle{Wave phase}
Michael@0 395 \begin{itemize}
Michael@0 396 \item The positions are repeated at subsequent cycles of the wave.
Michael@0 397 \end{itemize}
Michael@0 398 \begin{center}
Michael@0 399 \includegraphics[width = 0.85 \textwidth]{Figures/phasefigure2.pdf}
Michael@0 400 \end{center}
Michael@0 401 \end{frame}
Michael@0 402
Michael@0 403 \begin{frame}
Michael@0 404 \frametitle{Wave phase}
Michael@0 405 \begin{itemize}
Michael@0 406 \item The wave phase can be represented on a circle, as an angle.
Michael@0 407 \end{itemize}
Michael@0 408 \begin{center}
Michael@0 409 \includegraphics[height = 0.8 \textheight]{Figures/phaseAngle.pdf}
Michael@0 410 \end{center}
Michael@0 411 \end{frame}
Michael@0 412
Michael@0 413 \begin{frame}
Michael@0 414 \frametitle{Wave phase}
Michael@0 415 \begin{itemize}\itemsep24pt
Michael@0 416 \item Why do we care about wave phase as audio people?
Michael@0 417 \item We care, because the \textbf{difference} in phase is critical when we are adding waves together, and this is something we do \textbf{A LOT} in audio!
Michael@0 418 \item Adding waves: 1 + 1 = ...?
Michael@0 419 \end{itemize}
Michael@0 420
Michael@0 421 \end{frame}
Michael@0 422
Michael@0 423 \begin{frame}
Michael@0 424 \frametitle{Adding waves - in phase}
Michael@0 425 % \begin{itemize}
Michael@0 426 % \item Adding waves which are in phase (no difference in phase).
Michael@0 427 % \end{itemize}
Michael@0 428 \begin{center}
Michael@0 429 \includegraphics[width = 0.85 \textwidth]{Figures/phaseadd1.pdf}
Michael@0 430 \end{center}
Michael@0 431 \end{frame}
Michael@0 432
Michael@0 433 \begin{frame}
Michael@0 434 \frametitle{Adding waves - 1/8 cycle}
Michael@0 435 % \begin{itemize}
Michael@0 436 % \item Adding waves with a phase difference of $\frac{1}{8}\lambda$.
Michael@0 437 % \end{itemize}
Michael@0 438 \begin{center}
Michael@0 439 \includegraphics[width = 0.85 \textwidth]{Figures/phaseadd2.pdf}
Michael@0 440 \end{center}
Michael@0 441 \end{frame}
Michael@0 442
Michael@0 443 \begin{frame}
Michael@0 444 \frametitle{Adding waves - 1/4 cycle}
Michael@0 445 % \begin{itemize}
Michael@0 446 % \item Adding waves with a phase difference of $\frac{1}{4}\lambda$.
Michael@0 447 % \end{itemize}
Michael@0 448 \begin{center}
Michael@0 449 \includegraphics[width = 0.85 \textwidth]{Figures/phaseadd3.pdf}
Michael@0 450 \end{center}
Michael@0 451 \end{frame}
Michael@0 452
Michael@0 453 \begin{frame}
Michael@0 454 \frametitle{Adding waves - 3/8 cycle}
Michael@0 455 % \begin{itemize}
Michael@0 456 % \item Adding waves with a phase difference of $\frac{3}{8}\lambda$.
Michael@0 457 % \end{itemize}
Michael@0 458 \begin{center}
Michael@0 459 \includegraphics[width = 0.85 \textwidth]{Figures/phaseadd4.pdf}
Michael@0 460 \end{center}
Michael@0 461 \end{frame}
Michael@0 462
Michael@0 463 \begin{frame}
Michael@0 464 \frametitle{Adding waves - out of phase}
Michael@0 465 % \begin{itemize}
Michael@0 466 % \item Adding waves with a phase difference of $\frac{1}{2}\lambda$ (completely out of phase).
Michael@0 467 % \end{itemize}
Michael@0 468 \begin{center}
Michael@0 469 \includegraphics[width = 0.85 \textwidth]{Figures/phaseadd5.pdf}
Michael@0 470 \end{center}
Michael@0 471 \end{frame}
Michael@0 472
Michael@0 473 \begin{frame}
Michael@0 474 \frametitle{Adding waves - 5/8 cycle}
Michael@0 475 % \begin{itemize}
Michael@0 476 % \item Adding waves with a phase difference of $\frac{5}{8}\lambda$.
Michael@0 477 % \end{itemize}
Michael@0 478 \begin{center}
Michael@0 479 \includegraphics[width = 0.85 \textwidth]{Figures/phaseadd6.pdf}
Michael@0 480 \end{center}
Michael@0 481 \end{frame}
Michael@0 482
Michael@0 483 \begin{frame}
Michael@0 484 \frametitle{Adding waves - 3/4 cycle}
Michael@0 485 % \begin{itemize}
Michael@0 486 % \item Adding waves with a phase difference of $\frac{3}{4}\lambda$.
Michael@0 487 % \end{itemize}
Michael@0 488 \begin{center}
Michael@0 489 \includegraphics[width = 0.85 \textwidth]{Figures/phaseadd7.pdf}
Michael@0 490 \end{center}
Michael@0 491 \end{frame}
Michael@0 492
Michael@0 493 \begin{frame}
Michael@0 494 \frametitle{Adding waves - 7/8 cycle}
Michael@0 495 % \begin{itemize}
Michael@0 496 % \item Adding waves with a phase difference of $\frac{7}{8}\lambda$.
Michael@0 497 % \end{itemize}
Michael@0 498 \begin{center}
Michael@0 499 \includegraphics[width = 0.85 \textwidth]{Figures/phaseadd8.pdf}
Michael@0 500 \end{center}
Michael@0 501 \end{frame}
Michael@0 502
Michael@0 503 \begin{frame}
Michael@0 504 \frametitle{Adding waves - back in phase}
Michael@0 505 % \begin{itemize}
Michael@0 506 % \item Adding waves with a phase difference of $\lambda$ (back in phase).
Michael@0 507 % \end{itemize}
Michael@0 508 \begin{center}
Michael@0 509 \includegraphics[width = 0.85 \textwidth]{Figures/phaseadd9.pdf}
Michael@0 510 \end{center}
Michael@0 511 \end{frame}
Michael@0 512
Michael@0 513 \begin{frame}
Michael@0 514 \frametitle{Adding waves}
Michael@0 515 \begin{center}
Michael@0 516 \includegraphics[width = 0.85 \textwidth]{Figures/phaseAngleOnePlusOne.pdf}
Michael@0 517 \end{center}
Michael@0 518 \end{frame}
Michael@0 519
Michael@0 520 \begin{frame}
Michael@0 521 \frametitle{Adding waves}
Michael@0 522 \begin{center}
Michael@0 523 \includegraphics[width = 0.85 \textwidth]{Figures/phaseAngleOnePlusOne-180.pdf}
Michael@0 524 \end{center}
Michael@0 525 \end{frame}
Michael@0 526
Michael@0 527 \begin{frame}
Michael@0 528 \frametitle{Inverting Phase}
Michael@0 529 \vspace{0.5cm}
Michael@0 530 Phase is inverted when we `flip' the signal across the time axis.
Michael@0 531 \vspace{-0.2cm}
Michael@0 532 \begin{center}
Michael@0 533 \includegraphics[width = \textwidth]{Figures/WaveInPhase.eps}
Michael@0 534 \end{center}
Michael@0 535 \end{frame}
Michael@0 536
Michael@0 537 \begin{frame}
Michael@0 538 \frametitle{Inverting Phase}
Michael@0 539 \vspace{0.5cm}
Michael@0 540 Phase is inverted when we `flip' the signal across the time axis.
Michael@0 541 \vspace{-0.2cm}
Michael@0 542 \begin{center}
Michael@0 543 \includegraphics[width = \textwidth]{Figures/WavePhaseInvert.eps}
Michael@0 544 \end{center}
Michael@0 545 \end{frame}
Michael@0 546
Michael@0 547 \begin{frame}
Michael@0 548 \frametitle{Inverting Phase}
Michael@0 549 \vspace{0.3cm}
Michael@0 550 Adding inverted and non-inverted signals causes cancellation!
Michael@0 551 \vspace{-0.2cm}
Michael@0 552 \begin{center}
Michael@0 553 \includegraphics[width = \textwidth]{Figures/InvertCancellation.eps}
Michael@0 554 \end{center}
Michael@0 555 \end{frame}
Michael@0 556
Michael@0 557
Michael@0 558 \begin{frame}
Michael@0 559 \frametitle{Phase change with frequency}
Michael@0 560 \begin{itemize}\itemsep16pt
Michael@0 561 \item Phase differences between two sounds can vary as a function of frequency.
Michael@0 562 \item You cannot hear the difference in phase when the signal is played in isolation, but you will hear it when two signals are added together!
Michael@0 563 \end{itemize}
Michael@0 564 \end{frame}
Michael@0 565
Michael@0 566 \begin{frame}
Michael@0 567 \frametitle{Phase change with frequency}
Michael@0 568 \vspace{0.5cm}
Michael@0 569 Sound A:
Michael@0 570 \vspace{-0.2cm}
Michael@0 571 \begin{center}
Michael@0 572 \includegraphics[width = \textwidth]{Figures/SoundA.eps}
Michael@0 573 \end{center}
Michael@0 574 \end{frame}
Michael@0 575
Michael@0 576 \begin{frame}
Michael@0 577 \frametitle{Phase change with frequency}
Michael@0 578 \vspace{0.5cm}
Michael@0 579 Sound B:
Michael@0 580 \vspace{-0.2cm}
Michael@0 581 \begin{center}
Michael@0 582 \includegraphics[width = \textwidth]{Figures/SoundB.eps}
Michael@0 583 \end{center}
Michael@0 584 \end{frame}
Michael@0 585
Michael@0 586 \begin{frame}
Michael@0 587 \frametitle{Phase changes due to time delay}
Michael@0 588 \begin{itemize}\itemsep16pt
Michael@0 589 \item If two sounds are added with a time offset there will be a frequency dependent phase difference.
Michael@0 590 \item A time delay of $\mathbf{\tau}$ ms is added and can be expressed as a percentage of the time period, $\mathbf{T}$, to give a phase shift.
Michael@0 591 \begin{equation*}
Michael@0 592 \theta = \frac{\tau} {\mathbf{T}} \ \ \times \ \ 360 .
Michael@0 593 \end{equation*}
Michael@0 594 \end{itemize}
Michael@0 595 \end{frame}
Michael@0 596
Michael@0 597 \begin{frame}
Michael@0 598 \frametitle{Phase changes due to time delay}
Michael@0 599 \begin{itemize}\itemsep10pt
Michael@0 600 \item What happens if we add a delayed copy of Sound A to the original?
Michael@0 601 \item Sound A has frequency components: $\mathbf{F_1} = 100$ Hz, $\mathbf{F_2}=500$ Hz and $\mathbf{F_3}=8000$ Hz.
Michael@0 602 \item These relate to time periods: $\mathbf{T_1} = 10$ ms, $\mathbf{T_2}=2$ ms Hz and $\mathbf{T_3}=0.125$ ms.
Michael@0 603 \end{itemize}
Michael@0 604 \end{frame}
Michael@0 605
Michael@0 606 \begin{frame}
Michael@0 607 \frametitle{Phase changes due to time delay}
Michael@0 608 \begin{itemize}\itemsep10pt
Michael@0 609 \item If $\tau=1$ ms:
Michael@0 610 \begin{eqnarray}
Michael@0 611 \theta_1 = \frac{1}{10} \times 360 = 36^o. \\
Michael@0 612 \theta_2 = \frac{1}{2} \times 360 = 180^o. \\
Michael@0 613 \theta_3 = \frac{1}{0.125} \times 360 = 2880^o = 0^o.
Michael@0 614 \end{eqnarray}
Michael@0 615
Michael@0 616 \end{itemize}
Michael@0 617 \end{frame}
Michael@0 618
Michael@0 619 \begin{frame}
Michael@0 620 \frametitle{Phase changes due to time delay}
Michael@0 621 \vspace{0.5cm}
Michael@0 622 The effect of $\tau = 1$ ms plotted against frequency: referred to as a comb filter.
Michael@0 623 \vspace{-0.2cm}
Michael@0 624 \begin{center}
Michael@0 625 \includegraphics[width = 0.95 \textwidth]{Figures/CombFilter.eps}
Michael@0 626 \end{center}
Michael@0 627 \end{frame}
Michael@0 628
Michael@0 629
Michael@0 630
Michael@0 631 \end{document}
Michael@0 632
Michael@0 633
Michael@0 634
Michael@0 635
Michael@0 636
Michael@0 637
Michael@0 638
Michael@0 639
Michael@0 640
Michael@0 641
Michael@0 642
Michael@0 643
Michael@0 644
Michael@0 645
Michael@0 646
Michael@0 647
Michael@0 648
Michael@0 649