Michael@0
|
1 \documentclass[handout]{beamer}
|
Michael@0
|
2
|
Michael@0
|
3 \usepackage{../C4DMlecturetheme}
|
Michael@0
|
4
|
Michael@0
|
5 \usecolortheme{beaver}
|
Michael@0
|
6
|
Michael@0
|
7 % Set up the lecture details here
|
Michael@0
|
8 \setlecturedetails
|
Michael@0
|
9 %COURSE DETAILS:
|
Michael@0
|
10 {Sound Recording and Production} % COURSE TITLE
|
Michael@0
|
11 {ECS614U/ECS749P} % COURSE CODE
|
Michael@0
|
12 %
|
Michael@0
|
13 %LECTURER DETAILS:
|
Michael@0
|
14 {Michael Terrell} % LECTURER NAME(s)
|
Michael@0
|
15 {michael.terrell@eecs.qmul.ac.uk} % LECTURER EMAIL(s)
|
Michael@0
|
16 {http://qmplus.qmul.ac.uk/course/view.php?id=3243} % COURSE WEBPAGE URL
|
Michael@0
|
17 %
|
Michael@0
|
18 %LECTURE DETAILS:
|
Michael@0
|
19 {1} % LECTURE NUMBER
|
Michael@0
|
20 {The Physics of Sound} % LECTURE TITLE
|
Michael@0
|
21
|
Michael@0
|
22
|
Michael@0
|
23 \institute[C4DM]%
|
Michael@0
|
24 {Centre for Digital Music\\
|
Michael@0
|
25 School of Electronic Engineering and Computer Science\\
|
Michael@0
|
26 Queen Mary University of London}
|
Michael@0
|
27
|
Michael@0
|
28 \date[Semester 1, 2013--14]{Semester 1, 2013--14}
|
Michael@0
|
29
|
Michael@0
|
30 %\pgfdeclareimage[height=5mm]{theLogo}{QMULlogo}
|
Michael@0
|
31 %\logo{\pgfuseimage{theLogo}}
|
Michael@0
|
32
|
Michael@0
|
33 \beamerdefaultoverlayspecification{<+->}
|
Michael@0
|
34
|
Michael@0
|
35
|
Michael@0
|
36 \begin{document}
|
Michael@0
|
37 \section{Lecture \lecturenumber}
|
Michael@0
|
38 \subsection{ \lecturetitle}
|
Michael@0
|
39 \maketitle
|
Michael@0
|
40
|
Michael@0
|
41
|
Michael@0
|
42 \separator{Course Overview}
|
Michael@0
|
43
|
Michael@0
|
44 \begin{frame}
|
Michael@0
|
45 \frametitle{Lectures}
|
Michael@0
|
46 {\small
|
Michael@0
|
47 \begin{columns}
|
Michael@0
|
48
|
Michael@0
|
49 \column{4.5cm}
|
Michael@0
|
50 \begin{enumerate}
|
Michael@0
|
51 \item The Physics of Sound.
|
Michael@0
|
52 \item Microphones.
|
Michael@0
|
53 \item The Audio Chain.
|
Michael@0
|
54 \item MIDI.
|
Michael@0
|
55 \item Sound Design.
|
Michael@0
|
56 \item Mixing: Gain.
|
Michael@0
|
57 \end{enumerate}
|
Michael@0
|
58
|
Michael@0
|
59
|
Michael@0
|
60 \column{4.5cm}
|
Michael@0
|
61 \begin{enumerate}\setcounter{enumi}{6}
|
Michael@0
|
62 \item Mixing: Delay.
|
Michael@0
|
63 \item Mixing: Dynamics.
|
Michael@0
|
64 \item Sound Reproduction.
|
Michael@0
|
65 \item Psychoacoustics.
|
Michael@0
|
66 \item Mastering.
|
Michael@0
|
67 \item
|
Michael@0
|
68 \end{enumerate}
|
Michael@0
|
69
|
Michael@0
|
70 \end{columns}
|
Michael@0
|
71 }
|
Michael@0
|
72
|
Michael@0
|
73 \end{frame}
|
Michael@0
|
74
|
Michael@0
|
75 \begin{frame}
|
Michael@0
|
76 \frametitle{Coursework}
|
Michael@0
|
77 \begin{enumerate}\itemsep12pt
|
Michael@0
|
78 \item Microphone project: {\bf 5\%} (11/10/2013).
|
Michael@4
|
79 \item Apple loops project: {\bf 10\%} (1/11/2013).
|
Michael@0
|
80 \item Soundscape concept document: {\bf 30\%} (22/11/2013).
|
Michael@0
|
81 \item Soundscape audio and technical document: {\bf 55\%} (13/12/2013).
|
Michael@0
|
82 \end{enumerate}
|
Michael@0
|
83 \end{frame}
|
Michael@0
|
84
|
Michael@0
|
85 \separator{The Physics of Sound}
|
Michael@0
|
86
|
Michael@0
|
87 \begin{frame}
|
Michael@0
|
88 \frametitle{What is a sound?}
|
Michael@0
|
89 \begin{itemize}\itemsep8pt
|
Michael@0
|
90 \item A sound is a pressure wave.
|
Michael@0
|
91 \item The pressure wave travels through an acoustic medium, i.e. air.
|
Michael@0
|
92 \item The pressure wave consisting of compression and rarefaction.
|
Michael@0
|
93 \item In the compression and rarefaction parts of the wave, the particles which form the acoustic medium are respectively squashed together and pulled apart.
|
Michael@0
|
94 \item \href{http://illuminations.nctm.org/ActivityDetail.aspx?id=37}{\textit{Vibrating string animation}.}
|
Michael@0
|
95 \end{itemize}
|
Michael@0
|
96 \end{frame}
|
Michael@0
|
97
|
Michael@0
|
98 \begin{frame}
|
Michael@0
|
99 \frametitle{The waveform}
|
Michael@0
|
100 \begin{itemize}\itemsep12pt
|
Michael@0
|
101 \item A waveform is a graphical representation of a sound wave.
|
Michael@0
|
102 \end{itemize}
|
Michael@0
|
103 \begin{center}
|
Michael@0
|
104 \includegraphics[width = 0.9 \textwidth]{Figures/waveform.pdf}
|
Michael@0
|
105 \end{center}
|
Michael@0
|
106 \end{frame}
|
Michael@0
|
107
|
Michael@0
|
108 \begin{frame}
|
Michael@0
|
109 \frametitle{The waveform}
|
Michael@0
|
110 \begin{itemize}
|
Michael@0
|
111 \item A waveform plot can represent one of two things:
|
Michael@0
|
112 \setlength{\parskip}{0.25cm}
|
Michael@0
|
113 \begin{enumerate}\itemsep8pt
|
Michael@0
|
114 \item The waveform at a given point in space as it changes with time.
|
Michael@0
|
115 \item The waveform at a given moment in time as it changes in space.
|
Michael@0
|
116 \end{enumerate}
|
Michael@0
|
117 \item \href{http://www.kettering.edu/physics/drussell/Demos.html}{\textit{Waves in space and time}.}
|
Michael@0
|
118 \item When listening to a sound we are sensing the changes in pressure with time.
|
Michael@0
|
119 \end{itemize}
|
Michael@0
|
120 \end{frame}
|
Michael@0
|
121
|
Michael@0
|
122 \begin{frame}
|
Michael@0
|
123 \frametitle{Sound wave properties}
|
Michael@0
|
124 \begin{itemize}\itemsep12pt
|
Michael@0
|
125 \item Amplitude, \textbf{A} (Pa).
|
Michael@0
|
126 \item Frequency, \textbf{f} (Hz): number of cycles per second.
|
Michael@0
|
127 \item Time period, \textbf{T} (s): the time for one cycle.
|
Michael@0
|
128 \item Wavelength, $\mathbf{\lambda}$ (m): the distance taken up by one cycle.
|
Michael@0
|
129 \item Speed \textbf{c} (m/s): the speed at which the wave travels.
|
Michael@0
|
130 \end{itemize}
|
Michael@0
|
131 \end{frame}
|
Michael@0
|
132
|
Michael@0
|
133 \begin{frame}
|
Michael@0
|
134 \frametitle{A waveform versus time}
|
Michael@0
|
135 \setlength{\parskip}{0.5cm}
|
Michael@0
|
136 \begin{center}
|
Michael@0
|
137 \includegraphics[width = \textwidth]{Figures/100HzVsTime.eps}
|
Michael@0
|
138 \end{center}
|
Michael@0
|
139 \end{frame}
|
Michael@0
|
140
|
Michael@0
|
141 \begin{frame}
|
Michael@0
|
142 \frametitle{A waveform versus distance}
|
Michael@0
|
143 \setlength{\parskip}{0.5cm}
|
Michael@0
|
144 \begin{center}
|
Michael@0
|
145 \includegraphics[width = \textwidth]{Figures/100HzVsDistance.eps}
|
Michael@0
|
146 \end{center}
|
Michael@0
|
147 \end{frame}
|
Michael@0
|
148
|
Michael@0
|
149 \begin{frame}
|
Michael@0
|
150 \frametitle{The relationship between time and space}
|
Michael@0
|
151 \vspace{-0.75cm}
|
Michael@0
|
152 \begin{center}
|
Michael@0
|
153 \begin{equation*}
|
Michael@0
|
154 \mathbf {TIME = \frac{1}{FREQUENCY} \: \: \: \: \: \: \: \: \: \: \Longrightarrow } \: \: \: \: \mathbf {T = \frac{1}{f}}
|
Michael@0
|
155 \end{equation*}
|
Michael@0
|
156
|
Michael@0
|
157 \vspace{-0.25cm}
|
Michael@0
|
158
|
Michael@0
|
159 \begin{equation*}
|
Michael@0
|
160 \mathbf {WAVELENGTH \times FREQUENCY = SPEED \: \: \: \: \Longrightarrow} \: \: \: \: \mathbf {\lambda \times f = c}
|
Michael@0
|
161 \end{equation*}
|
Michael@0
|
162
|
Michael@0
|
163 \vspace{-0.25cm}
|
Michael@0
|
164
|
Michael@0
|
165 \begin{equation*}
|
Michael@0
|
166 \mathbf {DISTANCE = SPEED\times TIME \: \: \: \: \Longrightarrow} \: \: \: \: \mathbf {d = c \times t}
|
Michael@0
|
167 \end{equation*}
|
Michael@0
|
168
|
Michael@0
|
169 \vspace{0.5cm}
|
Michael@0
|
170
|
Michael@0
|
171 (The speed of sound in air (\textbf{c}) is 343 m/s)
|
Michael@0
|
172
|
Michael@0
|
173 \end{center}
|
Michael@0
|
174 \end{frame}
|
Michael@0
|
175
|
Michael@0
|
176 \begin{frame}
|
Michael@0
|
177 \frametitle{Complex waveforms}
|
Michael@0
|
178 \begin{itemize}\itemsep16pt
|
Michael@0
|
179 \item Real musical sounds are more complex than the sine waves shown so far.
|
Michael@0
|
180 \item But...we can think of a complex waveform as a summation of many different sine waves of different amplitude, frequency (and phase).
|
Michael@0
|
181 \end{itemize}
|
Michael@0
|
182 \end{frame}
|
Michael@0
|
183
|
Michael@0
|
184
|
Michael@0
|
185 \begin{frame}
|
Michael@0
|
186 \frametitle{Complex waveforms}
|
Michael@0
|
187 \vspace{0.5cm}
|
Michael@0
|
188 This complex waveform...
|
Michael@0
|
189 \vspace{-0.2cm}
|
Michael@0
|
190 \begin{center}
|
Michael@0
|
191 \includegraphics[width = \textwidth]{Figures/SummedWave.eps}
|
Michael@0
|
192 \end{center}
|
Michael@0
|
193
|
Michael@0
|
194 \end{frame}
|
Michael@0
|
195
|
Michael@0
|
196 \begin{frame}
|
Michael@0
|
197 \frametitle{Complex waveforms}
|
Michael@0
|
198 \vspace{0.5cm}
|
Michael@0
|
199 ...is made by summing these six simple waveforems.
|
Michael@0
|
200 \vspace{-0.2cm}
|
Michael@0
|
201 \begin{center}
|
Michael@0
|
202 \includegraphics[width = \textwidth]{Figures/IndividualWaves.eps}
|
Michael@0
|
203 \end{center}
|
Michael@0
|
204
|
Michael@0
|
205 \end{frame}
|
Michael@0
|
206
|
Michael@0
|
207 \begin{frame}
|
Michael@0
|
208 \frametitle{Sound Features}
|
Michael@0
|
209 \begin{itemize}\itemsep10pt
|
Michael@0
|
210 \item There are many different features that we can use to describe a sound.
|
Michael@0
|
211 \item Today we will consider two types of sound feature:
|
Michael@0
|
212 \vspace{0.25cm}
|
Michael@0
|
213 \begin{itemize}\itemsep8pt
|
Michael@0
|
214 \item Level features.
|
Michael@0
|
215 \item Spectral features.
|
Michael@0
|
216 \end{itemize}
|
Michael@0
|
217 \end{itemize}
|
Michael@0
|
218 \end{frame}
|
Michael@0
|
219
|
Michael@0
|
220 \begin{frame}
|
Michael@0
|
221 \frametitle{Level Features}
|
Michael@0
|
222 \vspace{0.2cm}
|
Michael@0
|
223 There are two key level features: {\bf RMS} and {\bf Peak} level.
|
Michael@0
|
224 \vspace{-0.2cm}
|
Michael@0
|
225 \begin{center}
|
Michael@0
|
226 \includegraphics[width = \textwidth]{Figures/RMSandPeak.eps}
|
Michael@0
|
227 \end{center}
|
Michael@0
|
228 \end{frame}
|
Michael@0
|
229
|
Michael@0
|
230 \begin{frame}
|
Michael@0
|
231 \frametitle{Level Features: dynamics}
|
Michael@0
|
232 \setlength{\parskip}{0.5cm}
|
Michael@0
|
233 \begin{itemize}\itemsep10pt
|
Michael@0
|
234 \item The term {\bf dynamics} is used to describe how much a sound varies over time.
|
Michael@0
|
235 \setlength{\parskip}{0.25cm}
|
Michael@0
|
236 \begin{itemize}\itemsep6pt
|
Michael@0
|
237 \item \textbf{Transient sounds} - large fluctuations in amplitude, e.g. percussion.
|
Michael@0
|
238 \item \textbf{Steady-state sounds} - minimal fluctuations in amplitude, e.g. constant sine-wave.
|
Michael@0
|
239 \end{itemize}
|
Michael@0
|
240 \item The {\bf dynamics} are quantified using the {\bf Crest Factor}, which is the logarithmic ratio of {\bf Peak} and {\bf RMS} levels:
|
Michael@0
|
241 \end{itemize}
|
Michael@0
|
242 \begin{equation}
|
Michael@0
|
243 \mathbf{Crest \ \ Factor} = 20\log_{10}\left(\frac{\mathbf{Peak}}{\mathbf{RMS}}\right)
|
Michael@0
|
244 \end{equation}
|
Michael@0
|
245 \end{frame}
|
Michael@0
|
246
|
Michael@0
|
247 \begin{frame}
|
Michael@0
|
248 \frametitle{Level Features: dynamics}
|
Michael@0
|
249 \begin{center}
|
Michael@0
|
250 \includegraphics[width = \textwidth]{Figures/CF_SineWave.eps}
|
Michael@0
|
251 \end{center}
|
Michael@0
|
252 \end{frame}
|
Michael@0
|
253
|
Michael@0
|
254 \begin{frame}
|
Michael@0
|
255 \frametitle{Level Features: dynamics}
|
Michael@0
|
256 \begin{center}
|
Michael@0
|
257 \includegraphics[width = \textwidth]{Figures/CF_Piano.eps}
|
Michael@0
|
258 \end{center}
|
Michael@0
|
259 \end{frame}
|
Michael@0
|
260
|
Michael@0
|
261 \begin{frame}
|
Michael@0
|
262 \frametitle{Level Features: dynamics}
|
Michael@0
|
263 \begin{center}
|
Michael@0
|
264 \includegraphics[width = \textwidth]{Figures/CF_Drum.eps}
|
Michael@0
|
265 \end{center}
|
Michael@0
|
266 \end{frame}
|
Michael@0
|
267
|
Michael@0
|
268 \begin{frame}
|
Michael@0
|
269 \frametitle{Level Features: dynamics}
|
Michael@0
|
270 \begin{center}
|
Michael@0
|
271 \includegraphics[width = \textwidth]{Figures/CF_Clarinet.eps}
|
Michael@0
|
272 \end{center}
|
Michael@0
|
273 \end{frame}
|
Michael@0
|
274
|
Michael@0
|
275 \begin{frame}
|
Michael@0
|
276 \frametitle{Level Features: dynamics}
|
Michael@0
|
277 \begin{center}
|
Michael@0
|
278 \includegraphics[width = \textwidth]{Figures/CF_Voice.eps}
|
Michael@0
|
279 \end{center}
|
Michael@0
|
280 \end{frame}
|
Michael@0
|
281
|
Michael@0
|
282 \begin{frame}
|
Michael@0
|
283 \frametitle{Level Features: dynamics}
|
Michael@0
|
284 \setlength{\parskip}{0.5cm}
|
Michael@0
|
285 \begin{itemize}\itemsep10pt
|
Michael@0
|
286 \item The {\bf dynamics} are quantified using the {\bf Crest Factor}, which is the logarithmic ratio of {\bf Peak} and {\bf RMS} levels:
|
Michael@0
|
287 \begin{equation}
|
Michael@0
|
288 \mathbf{Crest \ \ Factor} = 20\log_{10}\left(\frac{\mathbf{Peak}}{\mathbf{RMS}}\right)
|
Michael@0
|
289 \end{equation}
|
Michael@0
|
290 \item High Crest Factor $\rightarrow$ Transient.
|
Michael@0
|
291 \item Low Crest Factor $\rightarrow$ Steady-state.
|
Michael@0
|
292 \end{itemize}
|
Michael@0
|
293 \end{frame}
|
Michael@0
|
294
|
Michael@0
|
295
|
Michael@0
|
296 \begin{frame}
|
Michael@0
|
297 \frametitle{Spectral Features}
|
Michael@0
|
298 \vspace{0.2cm}
|
Michael@0
|
299 The frequency spectrum of a sound tell us how the energy within the sound is divided into different frequencies.
|
Michael@0
|
300 \vspace{-0.15cm}
|
Michael@0
|
301 \begin{center}
|
Michael@0
|
302 \includegraphics[width = \textwidth]{Figures/Spectrum.eps}
|
Michael@0
|
303 \end{center}
|
Michael@0
|
304 \end{frame}
|
Michael@0
|
305
|
Michael@0
|
306 \begin{frame}
|
Michael@0
|
307 \frametitle{Spectral Features}
|
Michael@0
|
308 \vspace{0.2cm}
|
Michael@0
|
309 The spikes on the spectrum relate to the individual sine waves from which the sound was composed:
|
Michael@0
|
310 \vspace{-0.2cm}
|
Michael@0
|
311 \begin{center}
|
Michael@0
|
312 \includegraphics[width = \textwidth]{Figures/FrequencyMulti.eps}
|
Michael@0
|
313 \end{center}
|
Michael@0
|
314 \end{frame}
|
Michael@0
|
315
|
Michael@0
|
316 \begin{frame}
|
Michael@0
|
317 \frametitle{Spectral Features}
|
Michael@0
|
318 \vspace{0.2cm}
|
Michael@0
|
319 The spikes on the spectrum relate to the individual sine waves from which the sound was composed:
|
Michael@0
|
320 \vspace{-0.2cm}
|
Michael@0
|
321 \begin{center}
|
Michael@0
|
322 \includegraphics[width = \textwidth]{Figures/FrequencyMultiP1.eps}
|
Michael@0
|
323 \end{center}
|
Michael@0
|
324 \end{frame}
|
Michael@0
|
325 \begin{frame}
|
Michael@0
|
326 \frametitle{Spectral Features}
|
Michael@0
|
327 \vspace{0.2cm}
|
Michael@0
|
328 The spikes on the spectrum relate to the individual sine waves from which the sound was composed:
|
Michael@0
|
329 \vspace{-0.2cm}
|
Michael@0
|
330 \begin{center}
|
Michael@0
|
331 \includegraphics[width = \textwidth]{Figures/FrequencyMultiP2.eps}
|
Michael@0
|
332 \end{center}
|
Michael@0
|
333 \end{frame}
|
Michael@0
|
334 \begin{frame}
|
Michael@0
|
335 \frametitle{Spectral Features}
|
Michael@0
|
336 \vspace{0.2cm}
|
Michael@0
|
337 The spikes on the spectrum relate to the individual sine waves from which the sound was composed:
|
Michael@0
|
338 \vspace{-0.2cm}
|
Michael@0
|
339 \begin{center}
|
Michael@0
|
340 \includegraphics[width = \textwidth]{Figures/FrequencyMultiP3.eps}
|
Michael@0
|
341 \end{center}
|
Michael@0
|
342 \end{frame}
|
Michael@0
|
343 \begin{frame}
|
Michael@0
|
344 \frametitle{Spectral Features}
|
Michael@0
|
345 \vspace{0.2cm}
|
Michael@0
|
346 The spikes on the spectrum relate to the individual sine waves from which the sound was composed:
|
Michael@0
|
347 \vspace{-0.2cm}
|
Michael@0
|
348 \begin{center}
|
Michael@0
|
349 \includegraphics[width = \textwidth]{Figures/FrequencyMultiP4.eps}
|
Michael@0
|
350 \end{center}
|
Michael@0
|
351 \end{frame}
|
Michael@0
|
352 \begin{frame}
|
Michael@0
|
353 \frametitle{Spectral Features}
|
Michael@0
|
354 \vspace{0.2cm}
|
Michael@0
|
355 The spikes on the spectrum relate to the individual sine waves from which the sound was composed:
|
Michael@0
|
356 \vspace{-0.2cm}
|
Michael@0
|
357 \begin{center}
|
Michael@0
|
358 \includegraphics[width = \textwidth]{Figures/FrequencyMultiP5.eps}
|
Michael@0
|
359 \end{center}
|
Michael@0
|
360 \end{frame}
|
Michael@0
|
361 \begin{frame}
|
Michael@0
|
362 \frametitle{Spectral Features}
|
Michael@0
|
363 \vspace{0.2cm}
|
Michael@0
|
364 The spikes on the spectrum relate to the individual sine waves from which the sound was composed:
|
Michael@0
|
365 \vspace{-0.2cm}
|
Michael@0
|
366 \begin{center}
|
Michael@0
|
367 \includegraphics[width = \textwidth]{Figures/FrequencyMultiP6.eps}
|
Michael@0
|
368 \end{center}
|
Michael@0
|
369 \end{frame}
|
Michael@0
|
370
|
Michael@1
|
371 \separator{Music Production}
|
Michael@1
|
372
|
Michael@1
|
373 \begin{frame}
|
Michael@1
|
374 \frametitle{Music Production}
|
Michael@1
|
375 \begin{center}
|
Michael@1
|
376 \includegraphics[width = \textwidth]{Figures/mixingCartoon.pdf}
|
Michael@1
|
377 \end{center}
|
Michael@1
|
378 \end{frame}
|
Michael@1
|
379
|
Michael@1
|
380
|
Michael@1
|
381 \separator{Wave Phase}
|
Michael@1
|
382
|
Michael@0
|
383 \begin{frame}
|
Michael@0
|
384 \frametitle{Wave phase}
|
Michael@0
|
385 \begin{itemize}
|
Michael@0
|
386 \item The position within a cycle of a wave is called the phase and it is defined as a fraction of the wavelength.
|
Michael@0
|
387 \end{itemize}
|
Michael@0
|
388 \begin{center}
|
Michael@0
|
389 \includegraphics[width = 0.85 \textwidth]{Figures/phasefigure.pdf}
|
Michael@0
|
390 \end{center}
|
Michael@0
|
391 \end{frame}
|
Michael@0
|
392
|
Michael@0
|
393 \begin{frame}
|
Michael@0
|
394 \frametitle{Wave phase}
|
Michael@0
|
395 \begin{itemize}
|
Michael@0
|
396 \item The positions are repeated at subsequent cycles of the wave.
|
Michael@0
|
397 \end{itemize}
|
Michael@0
|
398 \begin{center}
|
Michael@0
|
399 \includegraphics[width = 0.85 \textwidth]{Figures/phasefigure2.pdf}
|
Michael@0
|
400 \end{center}
|
Michael@0
|
401 \end{frame}
|
Michael@0
|
402
|
Michael@0
|
403 \begin{frame}
|
Michael@0
|
404 \frametitle{Wave phase}
|
Michael@0
|
405 \begin{itemize}
|
Michael@0
|
406 \item The wave phase can be represented on a circle, as an angle.
|
Michael@0
|
407 \end{itemize}
|
Michael@0
|
408 \begin{center}
|
Michael@0
|
409 \includegraphics[height = 0.8 \textheight]{Figures/phaseAngle.pdf}
|
Michael@0
|
410 \end{center}
|
Michael@0
|
411 \end{frame}
|
Michael@0
|
412
|
Michael@0
|
413 \begin{frame}
|
Michael@0
|
414 \frametitle{Wave phase}
|
Michael@0
|
415 \begin{itemize}\itemsep24pt
|
Michael@0
|
416 \item Why do we care about wave phase as audio people?
|
Michael@0
|
417 \item We care, because the \textbf{difference} in phase is critical when we are adding waves together, and this is something we do \textbf{A LOT} in audio!
|
Michael@0
|
418 \item Adding waves: 1 + 1 = ...?
|
Michael@0
|
419 \end{itemize}
|
Michael@0
|
420
|
Michael@0
|
421 \end{frame}
|
Michael@0
|
422
|
Michael@0
|
423 \begin{frame}
|
Michael@0
|
424 \frametitle{Adding waves - in phase}
|
Michael@0
|
425 % \begin{itemize}
|
Michael@0
|
426 % \item Adding waves which are in phase (no difference in phase).
|
Michael@0
|
427 % \end{itemize}
|
Michael@0
|
428 \begin{center}
|
Michael@0
|
429 \includegraphics[width = 0.85 \textwidth]{Figures/phaseadd1.pdf}
|
Michael@0
|
430 \end{center}
|
Michael@0
|
431 \end{frame}
|
Michael@0
|
432
|
Michael@0
|
433 \begin{frame}
|
Michael@0
|
434 \frametitle{Adding waves - 1/8 cycle}
|
Michael@0
|
435 % \begin{itemize}
|
Michael@0
|
436 % \item Adding waves with a phase difference of $\frac{1}{8}\lambda$.
|
Michael@0
|
437 % \end{itemize}
|
Michael@0
|
438 \begin{center}
|
Michael@0
|
439 \includegraphics[width = 0.85 \textwidth]{Figures/phaseadd2.pdf}
|
Michael@0
|
440 \end{center}
|
Michael@0
|
441 \end{frame}
|
Michael@0
|
442
|
Michael@0
|
443 \begin{frame}
|
Michael@0
|
444 \frametitle{Adding waves - 1/4 cycle}
|
Michael@0
|
445 % \begin{itemize}
|
Michael@0
|
446 % \item Adding waves with a phase difference of $\frac{1}{4}\lambda$.
|
Michael@0
|
447 % \end{itemize}
|
Michael@0
|
448 \begin{center}
|
Michael@0
|
449 \includegraphics[width = 0.85 \textwidth]{Figures/phaseadd3.pdf}
|
Michael@0
|
450 \end{center}
|
Michael@0
|
451 \end{frame}
|
Michael@0
|
452
|
Michael@0
|
453 \begin{frame}
|
Michael@0
|
454 \frametitle{Adding waves - 3/8 cycle}
|
Michael@0
|
455 % \begin{itemize}
|
Michael@0
|
456 % \item Adding waves with a phase difference of $\frac{3}{8}\lambda$.
|
Michael@0
|
457 % \end{itemize}
|
Michael@0
|
458 \begin{center}
|
Michael@0
|
459 \includegraphics[width = 0.85 \textwidth]{Figures/phaseadd4.pdf}
|
Michael@0
|
460 \end{center}
|
Michael@0
|
461 \end{frame}
|
Michael@0
|
462
|
Michael@0
|
463 \begin{frame}
|
Michael@0
|
464 \frametitle{Adding waves - out of phase}
|
Michael@0
|
465 % \begin{itemize}
|
Michael@0
|
466 % \item Adding waves with a phase difference of $\frac{1}{2}\lambda$ (completely out of phase).
|
Michael@0
|
467 % \end{itemize}
|
Michael@0
|
468 \begin{center}
|
Michael@0
|
469 \includegraphics[width = 0.85 \textwidth]{Figures/phaseadd5.pdf}
|
Michael@0
|
470 \end{center}
|
Michael@0
|
471 \end{frame}
|
Michael@0
|
472
|
Michael@0
|
473 \begin{frame}
|
Michael@0
|
474 \frametitle{Adding waves - 5/8 cycle}
|
Michael@0
|
475 % \begin{itemize}
|
Michael@0
|
476 % \item Adding waves with a phase difference of $\frac{5}{8}\lambda$.
|
Michael@0
|
477 % \end{itemize}
|
Michael@0
|
478 \begin{center}
|
Michael@0
|
479 \includegraphics[width = 0.85 \textwidth]{Figures/phaseadd6.pdf}
|
Michael@0
|
480 \end{center}
|
Michael@0
|
481 \end{frame}
|
Michael@0
|
482
|
Michael@0
|
483 \begin{frame}
|
Michael@0
|
484 \frametitle{Adding waves - 3/4 cycle}
|
Michael@0
|
485 % \begin{itemize}
|
Michael@0
|
486 % \item Adding waves with a phase difference of $\frac{3}{4}\lambda$.
|
Michael@0
|
487 % \end{itemize}
|
Michael@0
|
488 \begin{center}
|
Michael@0
|
489 \includegraphics[width = 0.85 \textwidth]{Figures/phaseadd7.pdf}
|
Michael@0
|
490 \end{center}
|
Michael@0
|
491 \end{frame}
|
Michael@0
|
492
|
Michael@0
|
493 \begin{frame}
|
Michael@0
|
494 \frametitle{Adding waves - 7/8 cycle}
|
Michael@0
|
495 % \begin{itemize}
|
Michael@0
|
496 % \item Adding waves with a phase difference of $\frac{7}{8}\lambda$.
|
Michael@0
|
497 % \end{itemize}
|
Michael@0
|
498 \begin{center}
|
Michael@0
|
499 \includegraphics[width = 0.85 \textwidth]{Figures/phaseadd8.pdf}
|
Michael@0
|
500 \end{center}
|
Michael@0
|
501 \end{frame}
|
Michael@0
|
502
|
Michael@0
|
503 \begin{frame}
|
Michael@0
|
504 \frametitle{Adding waves - back in phase}
|
Michael@0
|
505 % \begin{itemize}
|
Michael@0
|
506 % \item Adding waves with a phase difference of $\lambda$ (back in phase).
|
Michael@0
|
507 % \end{itemize}
|
Michael@0
|
508 \begin{center}
|
Michael@0
|
509 \includegraphics[width = 0.85 \textwidth]{Figures/phaseadd9.pdf}
|
Michael@0
|
510 \end{center}
|
Michael@0
|
511 \end{frame}
|
Michael@0
|
512
|
Michael@0
|
513 \begin{frame}
|
Michael@0
|
514 \frametitle{Adding waves}
|
Michael@0
|
515 \begin{center}
|
Michael@0
|
516 \includegraphics[width = 0.85 \textwidth]{Figures/phaseAngleOnePlusOne.pdf}
|
Michael@0
|
517 \end{center}
|
Michael@0
|
518 \end{frame}
|
Michael@0
|
519
|
Michael@0
|
520 \begin{frame}
|
Michael@0
|
521 \frametitle{Adding waves}
|
Michael@0
|
522 \begin{center}
|
Michael@0
|
523 \includegraphics[width = 0.85 \textwidth]{Figures/phaseAngleOnePlusOne-180.pdf}
|
Michael@0
|
524 \end{center}
|
Michael@0
|
525 \end{frame}
|
Michael@0
|
526
|
Michael@0
|
527 \begin{frame}
|
Michael@0
|
528 \frametitle{Inverting Phase}
|
Michael@0
|
529 \vspace{0.5cm}
|
Michael@0
|
530 Phase is inverted when we `flip' the signal across the time axis.
|
Michael@0
|
531 \vspace{-0.2cm}
|
Michael@0
|
532 \begin{center}
|
Michael@0
|
533 \includegraphics[width = \textwidth]{Figures/WaveInPhase.eps}
|
Michael@0
|
534 \end{center}
|
Michael@0
|
535 \end{frame}
|
Michael@0
|
536
|
Michael@0
|
537 \begin{frame}
|
Michael@0
|
538 \frametitle{Inverting Phase}
|
Michael@0
|
539 \vspace{0.5cm}
|
Michael@0
|
540 Phase is inverted when we `flip' the signal across the time axis.
|
Michael@0
|
541 \vspace{-0.2cm}
|
Michael@0
|
542 \begin{center}
|
Michael@0
|
543 \includegraphics[width = \textwidth]{Figures/WavePhaseInvert.eps}
|
Michael@0
|
544 \end{center}
|
Michael@0
|
545 \end{frame}
|
Michael@0
|
546
|
Michael@0
|
547 \begin{frame}
|
Michael@0
|
548 \frametitle{Inverting Phase}
|
Michael@0
|
549 \vspace{0.3cm}
|
Michael@0
|
550 Adding inverted and non-inverted signals causes cancellation!
|
Michael@0
|
551 \vspace{-0.2cm}
|
Michael@0
|
552 \begin{center}
|
Michael@0
|
553 \includegraphics[width = \textwidth]{Figures/InvertCancellation.eps}
|
Michael@0
|
554 \end{center}
|
Michael@0
|
555 \end{frame}
|
Michael@0
|
556
|
Michael@0
|
557
|
Michael@0
|
558 \begin{frame}
|
Michael@0
|
559 \frametitle{Phase change with frequency}
|
Michael@0
|
560 \begin{itemize}\itemsep16pt
|
Michael@0
|
561 \item Phase differences between two sounds can vary as a function of frequency.
|
Michael@0
|
562 \item You cannot hear the difference in phase when the signal is played in isolation, but you will hear it when two signals are added together!
|
Michael@0
|
563 \end{itemize}
|
Michael@0
|
564 \end{frame}
|
Michael@0
|
565
|
Michael@0
|
566 \begin{frame}
|
Michael@0
|
567 \frametitle{Phase change with frequency}
|
Michael@0
|
568 \vspace{0.5cm}
|
Michael@0
|
569 Sound A:
|
Michael@0
|
570 \vspace{-0.2cm}
|
Michael@0
|
571 \begin{center}
|
Michael@0
|
572 \includegraphics[width = \textwidth]{Figures/SoundA.eps}
|
Michael@0
|
573 \end{center}
|
Michael@0
|
574 \end{frame}
|
Michael@0
|
575
|
Michael@0
|
576 \begin{frame}
|
Michael@0
|
577 \frametitle{Phase change with frequency}
|
Michael@0
|
578 \vspace{0.5cm}
|
Michael@0
|
579 Sound B:
|
Michael@0
|
580 \vspace{-0.2cm}
|
Michael@0
|
581 \begin{center}
|
Michael@0
|
582 \includegraphics[width = \textwidth]{Figures/SoundB.eps}
|
Michael@0
|
583 \end{center}
|
Michael@0
|
584 \end{frame}
|
Michael@0
|
585
|
Michael@0
|
586 \begin{frame}
|
Michael@0
|
587 \frametitle{Phase changes due to time delay}
|
Michael@0
|
588 \begin{itemize}\itemsep16pt
|
Michael@0
|
589 \item If two sounds are added with a time offset there will be a frequency dependent phase difference.
|
Michael@0
|
590 \item A time delay of $\mathbf{\tau}$ ms is added and can be expressed as a percentage of the time period, $\mathbf{T}$, to give a phase shift.
|
Michael@0
|
591 \begin{equation*}
|
Michael@0
|
592 \theta = \frac{\tau} {\mathbf{T}} \ \ \times \ \ 360 .
|
Michael@0
|
593 \end{equation*}
|
Michael@0
|
594 \end{itemize}
|
Michael@0
|
595 \end{frame}
|
Michael@0
|
596
|
Michael@0
|
597 \begin{frame}
|
Michael@0
|
598 \frametitle{Phase changes due to time delay}
|
Michael@0
|
599 \begin{itemize}\itemsep10pt
|
Michael@0
|
600 \item What happens if we add a delayed copy of Sound A to the original?
|
Michael@0
|
601 \item Sound A has frequency components: $\mathbf{F_1} = 100$ Hz, $\mathbf{F_2}=500$ Hz and $\mathbf{F_3}=8000$ Hz.
|
Michael@0
|
602 \item These relate to time periods: $\mathbf{T_1} = 10$ ms, $\mathbf{T_2}=2$ ms Hz and $\mathbf{T_3}=0.125$ ms.
|
Michael@0
|
603 \end{itemize}
|
Michael@0
|
604 \end{frame}
|
Michael@0
|
605
|
Michael@0
|
606 \begin{frame}
|
Michael@0
|
607 \frametitle{Phase changes due to time delay}
|
Michael@0
|
608 \begin{itemize}\itemsep10pt
|
Michael@0
|
609 \item If $\tau=1$ ms:
|
Michael@0
|
610 \begin{eqnarray}
|
Michael@0
|
611 \theta_1 = \frac{1}{10} \times 360 = 36^o. \\
|
Michael@0
|
612 \theta_2 = \frac{1}{2} \times 360 = 180^o. \\
|
Michael@0
|
613 \theta_3 = \frac{1}{0.125} \times 360 = 2880^o = 0^o.
|
Michael@0
|
614 \end{eqnarray}
|
Michael@0
|
615
|
Michael@0
|
616 \end{itemize}
|
Michael@0
|
617 \end{frame}
|
Michael@0
|
618
|
Michael@0
|
619 \begin{frame}
|
Michael@0
|
620 \frametitle{Phase changes due to time delay}
|
Michael@0
|
621 \vspace{0.5cm}
|
Michael@0
|
622 The effect of $\tau = 1$ ms plotted against frequency: referred to as a comb filter.
|
Michael@0
|
623 \vspace{-0.2cm}
|
Michael@0
|
624 \begin{center}
|
Michael@0
|
625 \includegraphics[width = 0.95 \textwidth]{Figures/CombFilter.eps}
|
Michael@0
|
626 \end{center}
|
Michael@0
|
627 \end{frame}
|
Michael@0
|
628
|
Michael@0
|
629
|
Michael@0
|
630
|
Michael@0
|
631 \end{document}
|
Michael@0
|
632
|
Michael@0
|
633
|
Michael@0
|
634
|
Michael@0
|
635
|
Michael@0
|
636
|
Michael@0
|
637
|
Michael@0
|
638
|
Michael@0
|
639
|
Michael@0
|
640
|
Michael@0
|
641
|
Michael@0
|
642
|
Michael@0
|
643
|
Michael@0
|
644
|
Michael@0
|
645
|
Michael@0
|
646
|
Michael@0
|
647
|
Michael@0
|
648
|
Michael@0
|
649
|