comparison audioio/PhaseVocoderTimeStretcher.cpp @ 16:3715efc38f95

* substantial enhancements to time stretcher: -- use putInput/getOutput methods to ensure the audio source always feeds it enough input, avoiding underruns due to rounding error -- add a percussion detector and an optional "Sharpen" toggle to the main window, which invokes a very basic variable speed timestretcher
author Chris Cannam
date Wed, 13 Sep 2006 17:17:42 +0000
parents cc566264c935
children 67d54627efd3
comparison
equal deleted inserted replaced
15:cc566264c935 16:3715efc38f95
18 #include <iostream> 18 #include <iostream>
19 #include <cassert> 19 #include <cassert>
20 20
21 //#define DEBUG_PHASE_VOCODER_TIME_STRETCHER 1 21 //#define DEBUG_PHASE_VOCODER_TIME_STRETCHER 1
22 22
23 PhaseVocoderTimeStretcher::PhaseVocoderTimeStretcher(float ratio, 23 PhaseVocoderTimeStretcher::PhaseVocoderTimeStretcher(size_t channels,
24 float ratio,
25 bool sharpen,
24 size_t maxProcessInputBlockSize) : 26 size_t maxProcessInputBlockSize) :
25 m_ratio(ratio) 27 m_channels(channels),
26 //, 28 m_ratio(ratio),
27 // m_n1(inputIncrement), 29 m_sharpen(sharpen)
28 // m_n2(lrintf(m_n1 * ratio)), 30 {
29 // m_wlen(std::max(windowSize, m_n2 * 2)), 31 m_wlen = 1024;
30 // m_inbuf(m_wlen), 32
31 // m_outbuf(maxProcessInputBlockSize * ratio + 1024) //!!!
32 {
33 if (ratio < 1) { 33 if (ratio < 1) {
34 m_n1 = 512; 34 if (ratio < 0.4) {
35 m_n1 = 1024;
36 m_wlen = 2048;
37 } else if (ratio < 0.8) {
38 m_n1 = 512;
39 } else {
40 m_n1 = 256;
41 }
42 if (m_sharpen) {
43 m_n1 /= 2;
44 m_wlen = 2048;
45 }
35 m_n2 = m_n1 * ratio; 46 m_n2 = m_n1 * ratio;
36 m_wlen = 1024;
37 } else { 47 } else {
38 m_n2 = 512; 48 if (ratio > 2) {
49 m_n2 = 512;
50 m_wlen = 4096;
51 } else if (ratio > 1.6) {
52 m_n2 = 384;
53 m_wlen = 2048;
54 } else {
55 m_n2 = 256;
56 }
57 if (m_sharpen) {
58 m_n2 /= 2;
59 if (m_wlen < 2048) m_wlen = 2048;
60 }
39 m_n1 = m_n2 / ratio; 61 m_n1 = m_n2 / ratio;
40 m_wlen = 1024; 62 }
41 } 63
42 64 m_window = new Window<float>(HanningWindow, m_wlen);
43 m_inbuf = new RingBuffer<float>(m_wlen); 65
44 m_outbuf = new RingBuffer<float> 66 m_prevPhase = new float *[m_channels];
45 (lrintf((maxProcessInputBlockSize + m_wlen) * ratio)); 67 m_prevAdjustedPhase = new float *[m_channels];
46 68 if (m_sharpen) m_prevMag = new float *[m_channels];
47 std::cerr << "PhaseVocoderTimeStretcher: ratio = " << ratio 69 else m_prevMag = 0;
48 << ", n1 = " << m_n1 << ", n2 = " << m_n2 << ", wlen = " 70 m_prevPercussiveCount = new int[m_channels];
49 << m_wlen << ", max = " << maxProcessInputBlockSize << ", outbuflen = " << m_outbuf->getSize() << std::endl; 71
50 72 m_dbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen);
51 m_window = new Window<float>(HanningWindow, m_wlen),
52
53 m_time = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) * m_wlen); 73 m_time = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) * m_wlen);
54 m_freq = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) * m_wlen); 74 m_freq = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) * m_wlen);
55 m_dbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen); 75
56 m_mashbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen);
57 m_modulationbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen);
58 m_prevPhase = (float *)fftwf_malloc(sizeof(float) * m_wlen);
59 m_prevAdjustedPhase = (float *)fftwf_malloc(sizeof(float) * m_wlen);
60
61 m_plan = fftwf_plan_dft_1d(m_wlen, m_time, m_freq, FFTW_FORWARD, FFTW_ESTIMATE); 76 m_plan = fftwf_plan_dft_1d(m_wlen, m_time, m_freq, FFTW_FORWARD, FFTW_ESTIMATE);
62 m_iplan = fftwf_plan_dft_c2r_1d(m_wlen, m_freq, m_dbuf, FFTW_ESTIMATE); 77 m_iplan = fftwf_plan_dft_c2r_1d(m_wlen, m_freq, m_dbuf, FFTW_ESTIMATE);
63 78
79 m_inbuf = new RingBuffer<float> *[m_channels];
80 m_outbuf = new RingBuffer<float> *[m_channels];
81 m_mashbuf = new float *[m_channels];
82
83 m_modulationbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen);
84
85 for (size_t c = 0; c < m_channels; ++c) {
86
87 m_prevPhase[c] = (float *)fftwf_malloc(sizeof(float) * m_wlen);
88 m_prevAdjustedPhase[c] = (float *)fftwf_malloc(sizeof(float) * m_wlen);
89
90 if (m_sharpen) {
91 m_prevMag[c] = (float *)fftwf_malloc(sizeof(float) * m_wlen);
92 }
93
94 m_inbuf[c] = new RingBuffer<float>(m_wlen);
95 m_outbuf[c] = new RingBuffer<float>
96 (lrintf((maxProcessInputBlockSize + m_wlen) * ratio));
97
98 m_mashbuf[c] = (float *)fftwf_malloc(sizeof(float) * m_wlen);
99
100 for (int i = 0; i < m_wlen; ++i) {
101 m_mashbuf[c][i] = 0.0;
102 m_prevPhase[c][i] = 0.0;
103 m_prevAdjustedPhase[c][i] = 0.0;
104 if (m_sharpen) m_prevMag[c][i] = 0.0;
105 }
106
107 m_prevPercussiveCount[c] = 0;
108 }
109
64 for (int i = 0; i < m_wlen; ++i) { 110 for (int i = 0; i < m_wlen; ++i) {
65 m_mashbuf[i] = 0.0; 111 m_modulationbuf[i] = 0.0;
66 m_modulationbuf[i] = 0.0; 112 }
67 m_prevPhase[i] = 0.0; 113
68 m_prevAdjustedPhase[i] = 0.0; 114 std::cerr << "PhaseVocoderTimeStretcher: channels = " << channels
69 } 115 << ", ratio = " << ratio
116 << ", n1 = " << m_n1 << ", n2 = " << m_n2 << ", wlen = "
117 << m_wlen << ", max = " << maxProcessInputBlockSize
118 << ", outbuflen = " << m_outbuf[0]->getSize() << std::endl;
70 } 119 }
71 120
72 PhaseVocoderTimeStretcher::~PhaseVocoderTimeStretcher() 121 PhaseVocoderTimeStretcher::~PhaseVocoderTimeStretcher()
73 { 122 {
74 std::cerr << "PhaseVocoderTimeStretcher::~PhaseVocoderTimeStretcher" << std::endl; 123 std::cerr << "PhaseVocoderTimeStretcher::~PhaseVocoderTimeStretcher" << std::endl;
77 fftwf_destroy_plan(m_iplan); 126 fftwf_destroy_plan(m_iplan);
78 127
79 fftwf_free(m_time); 128 fftwf_free(m_time);
80 fftwf_free(m_freq); 129 fftwf_free(m_freq);
81 fftwf_free(m_dbuf); 130 fftwf_free(m_dbuf);
82 fftwf_free(m_mashbuf); 131
132 for (size_t c = 0; c < m_channels; ++c) {
133
134 fftwf_free(m_mashbuf[c]);
135 fftwf_free(m_prevPhase[c]);
136 fftwf_free(m_prevAdjustedPhase[c]);
137 if (m_sharpen) fftwf_free(m_prevMag[c]);
138
139 delete m_inbuf[c];
140 delete m_outbuf[c];
141 }
142
83 fftwf_free(m_modulationbuf); 143 fftwf_free(m_modulationbuf);
84 fftwf_free(m_prevPhase); 144
85 fftwf_free(m_prevAdjustedPhase); 145 delete[] m_prevPhase;
86 146 delete[] m_prevAdjustedPhase;
87 delete m_inbuf; 147 if (m_sharpen) delete[] m_prevMag;
88 delete m_outbuf; 148 delete[] m_prevPercussiveCount;
149 delete[] m_inbuf;
150 delete[] m_outbuf;
151 delete[] m_mashbuf;
89 152
90 delete m_window; 153 delete m_window;
91 } 154 }
92 155
93 size_t 156 size_t
95 { 158 {
96 return getWindowSize() - getInputIncrement(); 159 return getWindowSize() - getInputIncrement();
97 } 160 }
98 161
99 void 162 void
100 PhaseVocoderTimeStretcher::process(float *input, float *output, size_t samples) 163 PhaseVocoderTimeStretcher::process(float **input, float **output, size_t samples)
164 {
165 putInput(input, samples);
166 getOutput(output, lrintf(samples * m_ratio));
167 }
168
169 size_t
170 PhaseVocoderTimeStretcher::getRequiredInputSamples() const
171 {
172 if (m_inbuf[0]->getReadSpace() >= m_wlen) return 0;
173 return m_wlen - m_inbuf[0]->getReadSpace();
174 }
175
176 void
177 PhaseVocoderTimeStretcher::putInput(float **input, size_t samples)
101 { 178 {
102 // We need to add samples from input to our internal buffer. When 179 // We need to add samples from input to our internal buffer. When
103 // we have m_windowSize samples in the buffer, we can process it, 180 // we have m_windowSize samples in the buffer, we can process it,
104 // move the samples back by m_n1 and write the output onto our 181 // move the samples back by m_n1 and write the output onto our
105 // internal output buffer. If we have (samples * ratio) samples 182 // internal output buffer. If we have (samples * ratio) samples
113 190
114 // The processing latency is then m_wlen - m_n2. 191 // The processing latency is then m_wlen - m_n2.
115 192
116 size_t consumed = 0; 193 size_t consumed = 0;
117 194
118 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
119 std::cerr << "PhaseVocoderTimeStretcher::process(" << samples << ", consumed = " << consumed << "), writable " << m_inbuf->getWriteSpace() <<", readable "<< m_outbuf->getReadSpace() << std::endl;
120 #endif
121
122 while (consumed < samples) { 195 while (consumed < samples) {
123 196
124 size_t writable = m_inbuf->getWriteSpace(); 197 size_t writable = m_inbuf[0]->getWriteSpace();
125 writable = std::min(writable, samples - consumed); 198 writable = std::min(writable, samples - consumed);
126 199
127 if (writable == 0) { 200 if (writable == 0) {
128 //!!! then what? I don't think this should happen, but 201 //!!! then what? I don't think this should happen, but
129 std::cerr << "WARNING: PhaseVocoderTimeStretcher::process: writable == 0" << std::endl; 202 std::cerr << "WARNING: PhaseVocoderTimeStretcher::putInput: writable == 0" << std::endl;
130 break; 203 break;
131 } 204 }
132 205
133 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER 206 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
134 std::cerr << "writing " << writable << " from index " << consumed << " to inbuf, consumed will be " << consumed + writable << std::endl; 207 std::cerr << "writing " << writable << " from index " << consumed << " to inbuf, consumed will be " << consumed + writable << std::endl;
135 #endif 208 #endif
136 m_inbuf->write(input + consumed, writable); 209
210 for (size_t c = 0; c < m_channels; ++c) {
211 m_inbuf[c]->write(input[c] + consumed, writable);
212 }
137 consumed += writable; 213 consumed += writable;
138 214
139 while (m_inbuf->getReadSpace() >= m_wlen && 215 while (m_inbuf[0]->getReadSpace() >= m_wlen &&
140 m_outbuf->getWriteSpace() >= m_n2) { 216 m_outbuf[0]->getWriteSpace() >= m_n2) {
141 217
142 // We know we have at least m_wlen samples available 218 // We know we have at least m_wlen samples available
143 // in m_inbuf-> We need to peek m_wlen of them for 219 // in m_inbuf. We need to peek m_wlen of them for
144 // processing, and then read m_n1 to advance the read 220 // processing, and then read m_n1 to advance the read
145 // pointer. 221 // pointer.
146 222
147 size_t got = m_inbuf->peek(m_dbuf, m_wlen); 223 size_t n2 = m_n2;
148 assert(got == m_wlen); 224 bool isPercussive = false;
225
226 for (size_t c = 0; c < m_channels; ++c) {
227
228 size_t got = m_inbuf[c]->peek(m_dbuf, m_wlen);
229 assert(got == m_wlen);
149 230
150 processBlock(m_dbuf, m_mashbuf, m_modulationbuf); 231 bool thisChannelPercussive =
151 232 processBlock(c, m_dbuf, m_mashbuf[c],
152 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER 233 c == 0 ? m_modulationbuf : 0,
153 std::cerr << "writing first " << m_n2 << " from mashbuf, skipping " << m_n1 << " on inbuf " << std::endl; 234 isPercussive);
154 #endif 235
155 m_inbuf->skip(m_n1); 236 if (thisChannelPercussive && c == 0) {
156 237 isPercussive = true;
157 for (size_t i = 0; i < m_n2; ++i) { 238 }
158 if (m_modulationbuf[i] > 0.f) { 239
159 m_mashbuf[i] /= m_modulationbuf[i]; 240 if (isPercussive) {
241 n2 = m_n1;
242 }
243
244 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
245 std::cerr << "writing first " << m_n2 << " from mashbuf, skipping " << m_n1 << " on inbuf " << std::endl;
246 #endif
247 m_inbuf[c]->skip(m_n1);
248
249 for (size_t i = 0; i < n2; ++i) {
250 if (m_modulationbuf[i] > 0.f) {
251 m_mashbuf[c][i] /= m_modulationbuf[i];
252 }
253 }
254
255 m_outbuf[c]->write(m_mashbuf[c], n2);
256
257 for (size_t i = 0; i < m_wlen - n2; ++i) {
258 m_mashbuf[c][i] = m_mashbuf[c][i + n2];
259 }
260
261 for (size_t i = m_wlen - n2; i < m_wlen; ++i) {
262 m_mashbuf[c][i] = 0.0f;
160 } 263 }
161 } 264 }
162 265
163 m_outbuf->write(m_mashbuf, m_n2); 266 for (size_t i = 0; i < m_wlen - n2; ++i) {
164 267 m_modulationbuf[i] = m_modulationbuf[i + n2];
165 for (size_t i = 0; i < m_wlen - m_n2; ++i) {
166 m_mashbuf[i] = m_mashbuf[i + m_n2];
167 m_modulationbuf[i] = m_modulationbuf[i + m_n2];
168 } 268 }
169 269
170 for (size_t i = m_wlen - m_n2; i < m_wlen; ++i) { 270 for (size_t i = m_wlen - n2; i < m_wlen; ++i) {
171 m_mashbuf[i] = 0.0f;
172 m_modulationbuf[i] = 0.0f; 271 m_modulationbuf[i] = 0.0f;
173 } 272 }
174 } 273 }
175 274
176 // std::cerr << "WARNING: PhaseVocoderTimeStretcher::process: writespace not enough for output increment (" << m_outbuf->getWriteSpace() << " < " << m_n2 << ")" << std::endl; 275
177 // } 276 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
178 277 std::cerr << "loop ended: inbuf read space " << m_inbuf[0]->getReadSpace() << ", outbuf write space " << m_outbuf[0]->getWriteSpace() << std::endl;
179 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER 278 #endif
180 std::cerr << "loop ended: inbuf read space " << m_inbuf->getReadSpace() << ", outbuf write space " << m_outbuf->getWriteSpace() << std::endl; 279 }
181 #endif 280
182 } 281 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
183 282 std::cerr << "PhaseVocoderTimeStretcher::putInput returning" << std::endl;
184 size_t toRead = lrintf(samples * m_ratio); 283 #endif
185 284 }
186 if (m_outbuf->getReadSpace() < toRead) { 285
187 std::cerr << "WARNING: PhaseVocoderTimeStretcher::process: not enough data (yet?) (" << m_outbuf->getReadSpace() << " < " << toRead << ")" << std::endl; 286 size_t
188 size_t fill = toRead - m_outbuf->getReadSpace(); 287 PhaseVocoderTimeStretcher::getAvailableOutputSamples() const
189 for (size_t i = 0; i < fill; ++i) { 288 {
190 output[i] = 0.0; 289 return m_outbuf[0]->getReadSpace();
191 } 290 }
192 m_outbuf->read(output + fill, m_outbuf->getReadSpace()); 291
292 void
293 PhaseVocoderTimeStretcher::getOutput(float **output, size_t samples)
294 {
295 if (m_outbuf[0]->getReadSpace() < samples) {
296 std::cerr << "WARNING: PhaseVocoderTimeStretcher::getOutput: not enough data (yet?) (" << m_outbuf[0]->getReadSpace() << " < " << samples << ")" << std::endl;
297 size_t fill = samples - m_outbuf[0]->getReadSpace();
298 for (size_t c = 0; c < m_channels; ++c) {
299 for (size_t i = 0; i < fill; ++i) {
300 output[c][i] = 0.0;
301 }
302 m_outbuf[c]->read(output[c] + fill, m_outbuf[c]->getReadSpace());
303 }
193 } else { 304 } else {
194 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER 305 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
195 std::cerr << "enough data - writing " << toRead << " from outbuf" << std::endl; 306 std::cerr << "enough data - writing " << samples << " from outbuf" << std::endl;
196 #endif 307 #endif
197 m_outbuf->read(output, toRead); 308 for (size_t c = 0; c < m_channels; ++c) {
198 } 309 m_outbuf[c]->read(output[c], samples);
199 310 }
200 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER 311 }
201 std::cerr << "PhaseVocoderTimeStretcher::process returning" << std::endl; 312
202 #endif 313 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
203 } 314 std::cerr << "PhaseVocoderTimeStretcher::getOutput returning" << std::endl;
204 315 #endif
205 void 316 }
206 PhaseVocoderTimeStretcher::processBlock(float *buf, float *out, float *modulation) 317
318 bool
319 PhaseVocoderTimeStretcher::processBlock(size_t c,
320 float *buf, float *out,
321 float *modulation,
322 bool knownPercussive)
207 { 323 {
208 size_t i; 324 size_t i;
325 bool isPercussive = knownPercussive;
209 326
210 // buf contains m_wlen samples; out contains enough space for 327 // buf contains m_wlen samples; out contains enough space for
211 // m_wlen * ratio samples (we mix into out, rather than replacing) 328 // m_wlen * ratio samples (we mix into out, rather than replacing)
212 329
213 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER 330 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
214 std::cerr << "PhaseVocoderTimeStretcher::processBlock" << std::endl; 331 std::cerr << "PhaseVocoderTimeStretcher::processBlock (channel " << c << ")" << std::endl;
215 #endif 332 #endif
216 333
217 m_window->cut(buf); 334 m_window->cut(buf);
218 335
219 for (i = 0; i < m_wlen/2; ++i) { 336 for (i = 0; i < m_wlen/2; ++i) {
227 m_time[i][1] = 0.0; 344 m_time[i][1] = 0.0;
228 } 345 }
229 346
230 fftwf_execute(m_plan); // m_time -> m_freq 347 fftwf_execute(m_plan); // m_time -> m_freq
231 348
349 if (m_sharpen && c == 0) { //!!!
350
351 int count = 0;
352
353 for (i = 0; i < m_wlen; ++i) {
354
355 float mag = sqrtf(m_freq[i][0] * m_freq[i][0] +
356 m_freq[i][1] * m_freq[i][1]);
357
358 if (m_prevMag[c][i] > 0) {
359 float magdiff = 20.f * log10f(mag / m_prevMag[c][i]);
360 if (magdiff > 3.f) ++count;
361 }
362
363 m_prevMag[c][i] = mag;
364 }
365
366 if (count > m_wlen / 6 &&
367 count > m_prevPercussiveCount[c] * 1.2) {
368 isPercussive = true;
369 std::cerr << "isPercussive (count = " << count << ", prev = " << m_prevPercussiveCount[c] << ")" << std::endl;
370 }
371
372 m_prevPercussiveCount[c] = count;
373 }
374
375 size_t n2 = m_n2;
376 if (isPercussive) n2 = m_n1;
377
232 for (i = 0; i < m_wlen; ++i) { 378 for (i = 0; i < m_wlen; ++i) {
233 379
234 float mag = sqrtf(m_freq[i][0] * m_freq[i][0] + 380 float mag;
235 m_freq[i][1] * m_freq[i][1]); 381
382 if (m_sharpen && c == 0) {
383 mag = m_prevMag[c][i]; // can reuse this
384 } else {
385 mag = sqrtf(m_freq[i][0] * m_freq[i][0] +
386 m_freq[i][1] * m_freq[i][1]);
387 }
236 388
237 float phase = princargf(atan2f(m_freq[i][1], m_freq[i][0])); 389 float phase = princargf(atan2f(m_freq[i][1], m_freq[i][0]));
238 390
239 float omega = (2 * M_PI * m_n1 * i) / m_wlen; 391 float omega = (2 * M_PI * m_n1 * i) / m_wlen;
240 392
241 float expectedPhase = m_prevPhase[i] + omega; 393 float expectedPhase = m_prevPhase[c][i] + omega;
242 394
243 float phaseError = princargf(phase - expectedPhase); 395 float phaseError = princargf(phase - expectedPhase);
244 396
245 float phaseIncrement = (omega + phaseError) / m_n1; 397 float phaseIncrement = (omega + phaseError) / m_n1;
246 398
247 float adjustedPhase = m_prevAdjustedPhase[i] + m_n2 * phaseIncrement; 399 float adjustedPhase = m_prevAdjustedPhase[c][i] + n2 * phaseIncrement;
400
401 if (isPercussive) adjustedPhase = phase;
248 402
249 float real = mag * cosf(adjustedPhase); 403 float real = mag * cosf(adjustedPhase);
250 float imag = mag * sinf(adjustedPhase); 404 float imag = mag * sinf(adjustedPhase);
251 m_freq[i][0] = real; 405 m_freq[i][0] = real;
252 m_freq[i][1] = imag; 406 m_freq[i][1] = imag;
253 407
254 m_prevPhase[i] = phase; 408 m_prevPhase[c][i] = phase;
255 m_prevAdjustedPhase[i] = adjustedPhase; 409 m_prevAdjustedPhase[c][i] = adjustedPhase;
256 } 410 }
257 411
258 fftwf_execute(m_iplan); // m_freq -> in, inverse fft 412 fftwf_execute(m_iplan); // m_freq -> in, inverse fft
259 413
260 for (i = 0; i < m_wlen/2; ++i) { 414 for (i = 0; i < m_wlen/2; ++i) {
262 buf[i] = buf[i + m_wlen/2] / m_wlen; 416 buf[i] = buf[i + m_wlen/2] / m_wlen;
263 buf[i + m_wlen/2] = temp; 417 buf[i + m_wlen/2] = temp;
264 } 418 }
265 419
266 m_window->cut(buf); 420 m_window->cut(buf);
267 /* 421
268 int div = m_wlen / m_n2;
269 if (div > 1) div /= 2;
270 for (i = 0; i < m_wlen; ++i) { 422 for (i = 0; i < m_wlen; ++i) {
271 buf[i] /= div; 423 out[i] += buf[i];
272 } 424 }
273 */ 425
274 426 if (modulation) {
275 float area = m_window->getArea(); 427
276 428 float area = m_window->getArea();
277 for (i = 0; i < m_wlen; ++i) { 429
278 out[i] += buf[i]; 430 for (i = 0; i < m_wlen; ++i) {
279 float val = m_window->getValue(i); 431 float val = m_window->getValue(i);
280 modulation[i] += val * area; 432 modulation[i] += val * area;
281 } 433 }
282 } 434 }
283 435
436 return isPercussive;
437 }
438