Mercurial > hg > sonic-visualiser
view audioio/PhaseVocoderTimeStretcher.cpp @ 16:3715efc38f95
* substantial enhancements to time stretcher:
-- use putInput/getOutput methods to ensure the audio source always feeds
it enough input, avoiding underruns due to rounding error
-- add a percussion detector and an optional "Sharpen" toggle to the main
window, which invokes a very basic variable speed timestretcher
author | Chris Cannam |
---|---|
date | Wed, 13 Sep 2006 17:17:42 +0000 |
parents | cc566264c935 |
children | 67d54627efd3 |
line wrap: on
line source
/* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */ /* Sonic Visualiser An audio file viewer and annotation editor. Centre for Digital Music, Queen Mary, University of London. This file copyright 2006 Chris Cannam. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. See the file COPYING included with this distribution for more information. */ #include "PhaseVocoderTimeStretcher.h" #include <iostream> #include <cassert> //#define DEBUG_PHASE_VOCODER_TIME_STRETCHER 1 PhaseVocoderTimeStretcher::PhaseVocoderTimeStretcher(size_t channels, float ratio, bool sharpen, size_t maxProcessInputBlockSize) : m_channels(channels), m_ratio(ratio), m_sharpen(sharpen) { m_wlen = 1024; if (ratio < 1) { if (ratio < 0.4) { m_n1 = 1024; m_wlen = 2048; } else if (ratio < 0.8) { m_n1 = 512; } else { m_n1 = 256; } if (m_sharpen) { m_n1 /= 2; m_wlen = 2048; } m_n2 = m_n1 * ratio; } else { if (ratio > 2) { m_n2 = 512; m_wlen = 4096; } else if (ratio > 1.6) { m_n2 = 384; m_wlen = 2048; } else { m_n2 = 256; } if (m_sharpen) { m_n2 /= 2; if (m_wlen < 2048) m_wlen = 2048; } m_n1 = m_n2 / ratio; } m_window = new Window<float>(HanningWindow, m_wlen); m_prevPhase = new float *[m_channels]; m_prevAdjustedPhase = new float *[m_channels]; if (m_sharpen) m_prevMag = new float *[m_channels]; else m_prevMag = 0; m_prevPercussiveCount = new int[m_channels]; m_dbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen); m_time = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) * m_wlen); m_freq = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) * m_wlen); m_plan = fftwf_plan_dft_1d(m_wlen, m_time, m_freq, FFTW_FORWARD, FFTW_ESTIMATE); m_iplan = fftwf_plan_dft_c2r_1d(m_wlen, m_freq, m_dbuf, FFTW_ESTIMATE); m_inbuf = new RingBuffer<float> *[m_channels]; m_outbuf = new RingBuffer<float> *[m_channels]; m_mashbuf = new float *[m_channels]; m_modulationbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen); for (size_t c = 0; c < m_channels; ++c) { m_prevPhase[c] = (float *)fftwf_malloc(sizeof(float) * m_wlen); m_prevAdjustedPhase[c] = (float *)fftwf_malloc(sizeof(float) * m_wlen); if (m_sharpen) { m_prevMag[c] = (float *)fftwf_malloc(sizeof(float) * m_wlen); } m_inbuf[c] = new RingBuffer<float>(m_wlen); m_outbuf[c] = new RingBuffer<float> (lrintf((maxProcessInputBlockSize + m_wlen) * ratio)); m_mashbuf[c] = (float *)fftwf_malloc(sizeof(float) * m_wlen); for (int i = 0; i < m_wlen; ++i) { m_mashbuf[c][i] = 0.0; m_prevPhase[c][i] = 0.0; m_prevAdjustedPhase[c][i] = 0.0; if (m_sharpen) m_prevMag[c][i] = 0.0; } m_prevPercussiveCount[c] = 0; } for (int i = 0; i < m_wlen; ++i) { m_modulationbuf[i] = 0.0; } std::cerr << "PhaseVocoderTimeStretcher: channels = " << channels << ", ratio = " << ratio << ", n1 = " << m_n1 << ", n2 = " << m_n2 << ", wlen = " << m_wlen << ", max = " << maxProcessInputBlockSize << ", outbuflen = " << m_outbuf[0]->getSize() << std::endl; } PhaseVocoderTimeStretcher::~PhaseVocoderTimeStretcher() { std::cerr << "PhaseVocoderTimeStretcher::~PhaseVocoderTimeStretcher" << std::endl; fftwf_destroy_plan(m_plan); fftwf_destroy_plan(m_iplan); fftwf_free(m_time); fftwf_free(m_freq); fftwf_free(m_dbuf); for (size_t c = 0; c < m_channels; ++c) { fftwf_free(m_mashbuf[c]); fftwf_free(m_prevPhase[c]); fftwf_free(m_prevAdjustedPhase[c]); if (m_sharpen) fftwf_free(m_prevMag[c]); delete m_inbuf[c]; delete m_outbuf[c]; } fftwf_free(m_modulationbuf); delete[] m_prevPhase; delete[] m_prevAdjustedPhase; if (m_sharpen) delete[] m_prevMag; delete[] m_prevPercussiveCount; delete[] m_inbuf; delete[] m_outbuf; delete[] m_mashbuf; delete m_window; } size_t PhaseVocoderTimeStretcher::getProcessingLatency() const { return getWindowSize() - getInputIncrement(); } void PhaseVocoderTimeStretcher::process(float **input, float **output, size_t samples) { putInput(input, samples); getOutput(output, lrintf(samples * m_ratio)); } size_t PhaseVocoderTimeStretcher::getRequiredInputSamples() const { if (m_inbuf[0]->getReadSpace() >= m_wlen) return 0; return m_wlen - m_inbuf[0]->getReadSpace(); } void PhaseVocoderTimeStretcher::putInput(float **input, size_t samples) { // We need to add samples from input to our internal buffer. When // we have m_windowSize samples in the buffer, we can process it, // move the samples back by m_n1 and write the output onto our // internal output buffer. If we have (samples * ratio) samples // in that, we can write m_n2 of them back to output and return // (otherwise we have to write zeroes). // When we process, we write m_wlen to our fixed output buffer // (m_mashbuf). We then pull out the first m_n2 samples from that // buffer, push them into the output ring buffer, and shift // m_mashbuf left by that amount. // The processing latency is then m_wlen - m_n2. size_t consumed = 0; while (consumed < samples) { size_t writable = m_inbuf[0]->getWriteSpace(); writable = std::min(writable, samples - consumed); if (writable == 0) { //!!! then what? I don't think this should happen, but std::cerr << "WARNING: PhaseVocoderTimeStretcher::putInput: writable == 0" << std::endl; break; } #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER std::cerr << "writing " << writable << " from index " << consumed << " to inbuf, consumed will be " << consumed + writable << std::endl; #endif for (size_t c = 0; c < m_channels; ++c) { m_inbuf[c]->write(input[c] + consumed, writable); } consumed += writable; while (m_inbuf[0]->getReadSpace() >= m_wlen && m_outbuf[0]->getWriteSpace() >= m_n2) { // We know we have at least m_wlen samples available // in m_inbuf. We need to peek m_wlen of them for // processing, and then read m_n1 to advance the read // pointer. size_t n2 = m_n2; bool isPercussive = false; for (size_t c = 0; c < m_channels; ++c) { size_t got = m_inbuf[c]->peek(m_dbuf, m_wlen); assert(got == m_wlen); bool thisChannelPercussive = processBlock(c, m_dbuf, m_mashbuf[c], c == 0 ? m_modulationbuf : 0, isPercussive); if (thisChannelPercussive && c == 0) { isPercussive = true; } if (isPercussive) { n2 = m_n1; } #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER std::cerr << "writing first " << m_n2 << " from mashbuf, skipping " << m_n1 << " on inbuf " << std::endl; #endif m_inbuf[c]->skip(m_n1); for (size_t i = 0; i < n2; ++i) { if (m_modulationbuf[i] > 0.f) { m_mashbuf[c][i] /= m_modulationbuf[i]; } } m_outbuf[c]->write(m_mashbuf[c], n2); for (size_t i = 0; i < m_wlen - n2; ++i) { m_mashbuf[c][i] = m_mashbuf[c][i + n2]; } for (size_t i = m_wlen - n2; i < m_wlen; ++i) { m_mashbuf[c][i] = 0.0f; } } for (size_t i = 0; i < m_wlen - n2; ++i) { m_modulationbuf[i] = m_modulationbuf[i + n2]; } for (size_t i = m_wlen - n2; i < m_wlen; ++i) { m_modulationbuf[i] = 0.0f; } } #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER std::cerr << "loop ended: inbuf read space " << m_inbuf[0]->getReadSpace() << ", outbuf write space " << m_outbuf[0]->getWriteSpace() << std::endl; #endif } #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER std::cerr << "PhaseVocoderTimeStretcher::putInput returning" << std::endl; #endif } size_t PhaseVocoderTimeStretcher::getAvailableOutputSamples() const { return m_outbuf[0]->getReadSpace(); } void PhaseVocoderTimeStretcher::getOutput(float **output, size_t samples) { if (m_outbuf[0]->getReadSpace() < samples) { std::cerr << "WARNING: PhaseVocoderTimeStretcher::getOutput: not enough data (yet?) (" << m_outbuf[0]->getReadSpace() << " < " << samples << ")" << std::endl; size_t fill = samples - m_outbuf[0]->getReadSpace(); for (size_t c = 0; c < m_channels; ++c) { for (size_t i = 0; i < fill; ++i) { output[c][i] = 0.0; } m_outbuf[c]->read(output[c] + fill, m_outbuf[c]->getReadSpace()); } } else { #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER std::cerr << "enough data - writing " << samples << " from outbuf" << std::endl; #endif for (size_t c = 0; c < m_channels; ++c) { m_outbuf[c]->read(output[c], samples); } } #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER std::cerr << "PhaseVocoderTimeStretcher::getOutput returning" << std::endl; #endif } bool PhaseVocoderTimeStretcher::processBlock(size_t c, float *buf, float *out, float *modulation, bool knownPercussive) { size_t i; bool isPercussive = knownPercussive; // buf contains m_wlen samples; out contains enough space for // m_wlen * ratio samples (we mix into out, rather than replacing) #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER std::cerr << "PhaseVocoderTimeStretcher::processBlock (channel " << c << ")" << std::endl; #endif m_window->cut(buf); for (i = 0; i < m_wlen/2; ++i) { float temp = buf[i]; buf[i] = buf[i + m_wlen/2]; buf[i + m_wlen/2] = temp; } for (i = 0; i < m_wlen; ++i) { m_time[i][0] = buf[i]; m_time[i][1] = 0.0; } fftwf_execute(m_plan); // m_time -> m_freq if (m_sharpen && c == 0) { //!!! int count = 0; for (i = 0; i < m_wlen; ++i) { float mag = sqrtf(m_freq[i][0] * m_freq[i][0] + m_freq[i][1] * m_freq[i][1]); if (m_prevMag[c][i] > 0) { float magdiff = 20.f * log10f(mag / m_prevMag[c][i]); if (magdiff > 3.f) ++count; } m_prevMag[c][i] = mag; } if (count > m_wlen / 6 && count > m_prevPercussiveCount[c] * 1.2) { isPercussive = true; std::cerr << "isPercussive (count = " << count << ", prev = " << m_prevPercussiveCount[c] << ")" << std::endl; } m_prevPercussiveCount[c] = count; } size_t n2 = m_n2; if (isPercussive) n2 = m_n1; for (i = 0; i < m_wlen; ++i) { float mag; if (m_sharpen && c == 0) { mag = m_prevMag[c][i]; // can reuse this } else { mag = sqrtf(m_freq[i][0] * m_freq[i][0] + m_freq[i][1] * m_freq[i][1]); } float phase = princargf(atan2f(m_freq[i][1], m_freq[i][0])); float omega = (2 * M_PI * m_n1 * i) / m_wlen; float expectedPhase = m_prevPhase[c][i] + omega; float phaseError = princargf(phase - expectedPhase); float phaseIncrement = (omega + phaseError) / m_n1; float adjustedPhase = m_prevAdjustedPhase[c][i] + n2 * phaseIncrement; if (isPercussive) adjustedPhase = phase; float real = mag * cosf(adjustedPhase); float imag = mag * sinf(adjustedPhase); m_freq[i][0] = real; m_freq[i][1] = imag; m_prevPhase[c][i] = phase; m_prevAdjustedPhase[c][i] = adjustedPhase; } fftwf_execute(m_iplan); // m_freq -> in, inverse fft for (i = 0; i < m_wlen/2; ++i) { float temp = buf[i] / m_wlen; buf[i] = buf[i + m_wlen/2] / m_wlen; buf[i + m_wlen/2] = temp; } m_window->cut(buf); for (i = 0; i < m_wlen; ++i) { out[i] += buf[i]; } if (modulation) { float area = m_window->getArea(); for (i = 0; i < m_wlen; ++i) { float val = m_window->getValue(i); modulation[i] += val * area; } } return isPercussive; }