annotate audioio/IntegerTimeStretcher.cpp @ 12:ee967635c728

* Some work on making the time stretcher squash as well as stretch
author Chris Cannam
date Tue, 12 Sep 2006 16:43:00 +0000
parents cd5d7ff8ef38
children 00ed645f4175
rev   line source
Chris@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@0 2
Chris@0 3 /*
Chris@0 4 Sonic Visualiser
Chris@0 5 An audio file viewer and annotation editor.
Chris@0 6 Centre for Digital Music, Queen Mary, University of London.
Chris@0 7 This file copyright 2006 Chris Cannam.
Chris@0 8
Chris@0 9 This program is free software; you can redistribute it and/or
Chris@0 10 modify it under the terms of the GNU General Public License as
Chris@0 11 published by the Free Software Foundation; either version 2 of the
Chris@0 12 License, or (at your option) any later version. See the file
Chris@0 13 COPYING included with this distribution for more information.
Chris@0 14 */
Chris@0 15
Chris@0 16 #include "IntegerTimeStretcher.h"
Chris@0 17
Chris@0 18 #include <iostream>
Chris@0 19 #include <cassert>
Chris@0 20
Chris@0 21 //#define DEBUG_INTEGER_TIME_STRETCHER 1
Chris@0 22
Chris@12 23 IntegerTimeStretcher::IntegerTimeStretcher(float ratio,
Chris@0 24 size_t maxProcessInputBlockSize,
Chris@0 25 size_t inputIncrement,
Chris@0 26 size_t windowSize,
Chris@0 27 WindowType windowType) :
Chris@0 28 m_ratio(ratio),
Chris@0 29 m_n1(inputIncrement),
Chris@12 30 m_n2(lrintf(m_n1 * ratio)),
Chris@0 31 m_wlen(std::max(windowSize, m_n2 * 2)),
Chris@0 32 m_inbuf(m_wlen),
Chris@12 33 m_outbuf(maxProcessInputBlockSize * ratio + 1024) //!!!
Chris@0 34 {
Chris@0 35 m_window = new Window<float>(windowType, m_wlen),
Chris@0 36
Chris@0 37 m_time = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) * m_wlen);
Chris@0 38 m_freq = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) * m_wlen);
Chris@0 39 m_dbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen);
Chris@12 40 m_mashbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen);
Chris@12 41 m_prevPhase = (float *)fftwf_malloc(sizeof(float) * m_wlen);
Chris@12 42 m_prevAdjustedPhase = (float *)fftwf_malloc(sizeof(float) * m_wlen);
Chris@0 43
Chris@0 44 m_plan = fftwf_plan_dft_1d(m_wlen, m_time, m_freq, FFTW_FORWARD, FFTW_ESTIMATE);
Chris@0 45 m_iplan = fftwf_plan_dft_c2r_1d(m_wlen, m_freq, m_dbuf, FFTW_ESTIMATE);
Chris@0 46
Chris@0 47 for (int i = 0; i < m_wlen; ++i) {
Chris@0 48 m_mashbuf[i] = 0.0;
Chris@12 49 m_prevPhase[i] = 0.0;
Chris@12 50 m_prevAdjustedPhase[i] = 0.0;
Chris@0 51 }
Chris@0 52 }
Chris@0 53
Chris@0 54 IntegerTimeStretcher::~IntegerTimeStretcher()
Chris@0 55 {
Chris@0 56 std::cerr << "IntegerTimeStretcher::~IntegerTimeStretcher" << std::endl;
Chris@0 57
Chris@0 58 fftwf_destroy_plan(m_plan);
Chris@0 59 fftwf_destroy_plan(m_iplan);
Chris@0 60
Chris@0 61 fftwf_free(m_time);
Chris@0 62 fftwf_free(m_freq);
Chris@0 63 fftwf_free(m_dbuf);
Chris@12 64 fftwf_free(m_mashbuf);
Chris@12 65 fftwf_free(m_prevPhase);
Chris@12 66 fftwf_free(m_prevAdjustedPhase);
Chris@0 67
Chris@0 68 delete m_window;
Chris@0 69 }
Chris@0 70
Chris@0 71 size_t
Chris@0 72 IntegerTimeStretcher::getProcessingLatency() const
Chris@0 73 {
Chris@0 74 return getWindowSize() - getInputIncrement();
Chris@0 75 }
Chris@0 76
Chris@0 77 void
Chris@0 78 IntegerTimeStretcher::process(float *input, float *output, size_t samples)
Chris@0 79 {
Chris@0 80 // We need to add samples from input to our internal buffer. When
Chris@0 81 // we have m_windowSize samples in the buffer, we can process it,
Chris@0 82 // move the samples back by m_n1 and write the output onto our
Chris@0 83 // internal output buffer. If we have (samples * ratio) samples
Chris@0 84 // in that, we can write m_n2 of them back to output and return
Chris@0 85 // (otherwise we have to write zeroes).
Chris@0 86
Chris@0 87 // When we process, we write m_wlen to our fixed output buffer
Chris@0 88 // (m_mashbuf). We then pull out the first m_n2 samples from that
Chris@0 89 // buffer, push them into the output ring buffer, and shift
Chris@0 90 // m_mashbuf left by that amount.
Chris@0 91
Chris@0 92 // The processing latency is then m_wlen - m_n2.
Chris@0 93
Chris@0 94 size_t consumed = 0;
Chris@0 95
Chris@0 96 #ifdef DEBUG_INTEGER_TIME_STRETCHER
Chris@0 97 std::cerr << "IntegerTimeStretcher::process(" << samples << ", consumed = " << consumed << "), writable " << m_inbuf.getWriteSpace() <<", readable "<< m_outbuf.getReadSpace() << std::endl;
Chris@0 98 #endif
Chris@0 99
Chris@0 100 while (consumed < samples) {
Chris@0 101
Chris@0 102 size_t writable = m_inbuf.getWriteSpace();
Chris@0 103 writable = std::min(writable, samples - consumed);
Chris@0 104
Chris@0 105 if (writable == 0) {
Chris@0 106 //!!! then what? I don't think this should happen, but
Chris@0 107 std::cerr << "WARNING: IntegerTimeStretcher::process: writable == 0" << std::endl;
Chris@0 108 break;
Chris@0 109 }
Chris@0 110
Chris@0 111 #ifdef DEBUG_INTEGER_TIME_STRETCHER
Chris@0 112 std::cerr << "writing " << writable << " from index " << consumed << " to inbuf, consumed will be " << consumed + writable << std::endl;
Chris@0 113 #endif
Chris@0 114 m_inbuf.write(input + consumed, writable);
Chris@0 115 consumed += writable;
Chris@0 116
Chris@0 117 while (m_inbuf.getReadSpace() >= m_wlen &&
Chris@0 118 m_outbuf.getWriteSpace() >= m_n2) {
Chris@0 119
Chris@0 120 // We know we have at least m_wlen samples available
Chris@0 121 // in m_inbuf. We need to peek m_wlen of them for
Chris@0 122 // processing, and then read m_n1 to advance the read
Chris@0 123 // pointer.
Chris@0 124
Chris@0 125 size_t got = m_inbuf.peek(m_dbuf, m_wlen);
Chris@0 126 assert(got == m_wlen);
Chris@0 127
Chris@0 128 processBlock(m_dbuf, m_mashbuf);
Chris@0 129
Chris@0 130 #ifdef DEBUG_INTEGER_TIME_STRETCHER
Chris@0 131 std::cerr << "writing first " << m_n2 << " from mashbuf, skipping " << m_n1 << " on inbuf " << std::endl;
Chris@0 132 #endif
Chris@0 133 m_inbuf.skip(m_n1);
Chris@0 134 m_outbuf.write(m_mashbuf, m_n2);
Chris@0 135
Chris@0 136 for (size_t i = 0; i < m_wlen - m_n2; ++i) {
Chris@0 137 m_mashbuf[i] = m_mashbuf[i + m_n2];
Chris@0 138 }
Chris@0 139 for (size_t i = m_wlen - m_n2; i < m_wlen; ++i) {
Chris@0 140 m_mashbuf[i] = 0.0f;
Chris@0 141 }
Chris@0 142 }
Chris@0 143
Chris@0 144 // std::cerr << "WARNING: IntegerTimeStretcher::process: writespace not enough for output increment (" << m_outbuf.getWriteSpace() << " < " << m_n2 << ")" << std::endl;
Chris@0 145 // }
Chris@0 146
Chris@0 147 #ifdef DEBUG_INTEGER_TIME_STRETCHER
Chris@0 148 std::cerr << "loop ended: inbuf read space " << m_inbuf.getReadSpace() << ", outbuf write space " << m_outbuf.getWriteSpace() << std::endl;
Chris@0 149 #endif
Chris@0 150 }
Chris@0 151
Chris@12 152 size_t toRead = lrintf(samples * m_ratio);
Chris@12 153
Chris@12 154 if (m_outbuf.getReadSpace() < toRead) {
Chris@12 155 std::cerr << "WARNING: IntegerTimeStretcher::process: not enough data (yet?) (" << m_outbuf.getReadSpace() << " < " << toRead << ")" << std::endl;
Chris@12 156 size_t fill = toRead - m_outbuf.getReadSpace();
Chris@0 157 for (size_t i = 0; i < fill; ++i) {
Chris@0 158 output[i] = 0.0;
Chris@0 159 }
Chris@0 160 m_outbuf.read(output + fill, m_outbuf.getReadSpace());
Chris@0 161 } else {
Chris@0 162 #ifdef DEBUG_INTEGER_TIME_STRETCHER
Chris@12 163 std::cerr << "enough data - writing " << toRead << " from outbuf" << std::endl;
Chris@0 164 #endif
Chris@12 165 m_outbuf.read(output, toRead);
Chris@0 166 }
Chris@0 167
Chris@0 168 #ifdef DEBUG_INTEGER_TIME_STRETCHER
Chris@0 169 std::cerr << "IntegerTimeStretcher::process returning" << std::endl;
Chris@0 170 #endif
Chris@0 171 }
Chris@0 172
Chris@0 173 void
Chris@0 174 IntegerTimeStretcher::processBlock(float *buf, float *out)
Chris@0 175 {
Chris@0 176 size_t i;
Chris@0 177
Chris@0 178 // buf contains m_wlen samples; out contains enough space for
Chris@0 179 // m_wlen * ratio samples (we mix into out, rather than replacing)
Chris@0 180
Chris@0 181 #ifdef DEBUG_INTEGER_TIME_STRETCHER
Chris@0 182 std::cerr << "IntegerTimeStretcher::processBlock" << std::endl;
Chris@0 183 #endif
Chris@0 184
Chris@0 185 m_window->cut(buf);
Chris@0 186
Chris@0 187 for (i = 0; i < m_wlen/2; ++i) {
Chris@0 188 float temp = buf[i];
Chris@0 189 buf[i] = buf[i + m_wlen/2];
Chris@0 190 buf[i + m_wlen/2] = temp;
Chris@0 191 }
Chris@0 192
Chris@0 193 for (i = 0; i < m_wlen; ++i) {
Chris@0 194 m_time[i][0] = buf[i];
Chris@0 195 m_time[i][1] = 0.0;
Chris@0 196 }
Chris@0 197
Chris@0 198 fftwf_execute(m_plan); // m_time -> m_freq
Chris@0 199
Chris@0 200 for (i = 0; i < m_wlen; ++i) {
Chris@0 201
Chris@0 202 float mag = sqrtf(m_freq[i][0] * m_freq[i][0] +
Chris@0 203 m_freq[i][1] * m_freq[i][1]);
Chris@0 204
Chris@12 205 float phase = princargf(atan2f(m_freq[i][1], m_freq[i][0]));
Chris@12 206
Chris@12 207 float omega = (2 * M_PI * m_n1 * i) / m_wlen;
Chris@0 208
Chris@12 209 float expectedPhase = m_prevPhase[i] + omega;
Chris@12 210
Chris@12 211 float phaseError = princargf(phase - expectedPhase);
Chris@12 212
Chris@12 213 float phaseIncrement = (omega + phaseError) / m_n1;
Chris@12 214
Chris@12 215 float adjustedPhase = m_prevAdjustedPhase[i] + m_n2 * phaseIncrement;
Chris@0 216
Chris@12 217 float real = mag * cosf(adjustedPhase);
Chris@12 218 float imag = mag * sinf(adjustedPhase);
Chris@0 219 m_freq[i][0] = real;
Chris@0 220 m_freq[i][1] = imag;
Chris@12 221
Chris@12 222 m_prevPhase[i] = phase;
Chris@12 223 m_prevAdjustedPhase[i] = adjustedPhase;
Chris@0 224 }
Chris@0 225
Chris@0 226 fftwf_execute(m_iplan); // m_freq -> in, inverse fft
Chris@0 227
Chris@0 228 for (i = 0; i < m_wlen/2; ++i) {
Chris@0 229 float temp = buf[i] / m_wlen;
Chris@0 230 buf[i] = buf[i + m_wlen/2] / m_wlen;
Chris@0 231 buf[i + m_wlen/2] = temp;
Chris@0 232 }
Chris@0 233
Chris@0 234 m_window->cut(buf);
Chris@0 235
Chris@0 236 int div = m_wlen / m_n2;
Chris@0 237 if (div > 1) div /= 2;
Chris@0 238 for (i = 0; i < m_wlen; ++i) {
Chris@0 239 buf[i] /= div;
Chris@0 240 }
Chris@0 241
Chris@0 242 for (i = 0; i < m_wlen; ++i) {
Chris@0 243 out[i] += buf[i];
Chris@0 244 }
Chris@0 245 }