annotate audioio/PhaseVocoderTimeStretcher.cpp @ 24:ae0731ba8e67

* Put channel and windowing parameters on an "advanced" bit of the plugin parameter window
author Chris Cannam
date Fri, 15 Sep 2006 13:50:22 +0000
parents 80126455d169
children e74f508db18c
rev   line source
Chris@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@0 2
Chris@0 3 /*
Chris@0 4 Sonic Visualiser
Chris@0 5 An audio file viewer and annotation editor.
Chris@0 6 Centre for Digital Music, Queen Mary, University of London.
Chris@0 7 This file copyright 2006 Chris Cannam.
Chris@0 8
Chris@0 9 This program is free software; you can redistribute it and/or
Chris@0 10 modify it under the terms of the GNU General Public License as
Chris@0 11 published by the Free Software Foundation; either version 2 of the
Chris@0 12 License, or (at your option) any later version. See the file
Chris@0 13 COPYING included with this distribution for more information.
Chris@0 14 */
Chris@0 15
Chris@14 16 #include "PhaseVocoderTimeStretcher.h"
Chris@0 17
Chris@0 18 #include <iostream>
Chris@0 19 #include <cassert>
Chris@0 20
Chris@14 21 //#define DEBUG_PHASE_VOCODER_TIME_STRETCHER 1
Chris@0 22
Chris@22 23 PhaseVocoderTimeStretcher::PhaseVocoderTimeStretcher(size_t sampleRate,
Chris@22 24 size_t channels,
Chris@16 25 float ratio,
Chris@16 26 bool sharpen,
Chris@15 27 size_t maxProcessInputBlockSize) :
Chris@22 28 m_sampleRate(sampleRate),
Chris@16 29 m_channels(channels),
Chris@16 30 m_ratio(ratio),
Chris@21 31 m_sharpen(sharpen),
Chris@21 32 m_totalCount(0),
Chris@21 33 m_transientCount(0),
Chris@21 34 m_n2sum(0)
Chris@0 35 {
Chris@16 36 m_wlen = 1024;
Chris@16 37
Chris@21 38 //!!! In transient sharpening mode, we need to pick the window
Chris@21 39 //length so as to be more or less fixed in audio duration (i.e. we
Chris@22 40 //need to exploit the sample rate)
Chris@22 41
Chris@22 42 //!!! have to work out the relationship between wlen and transient
Chris@22 43 //threshold
Chris@21 44
Chris@15 45 if (ratio < 1) {
Chris@16 46 if (ratio < 0.4) {
Chris@16 47 m_n1 = 1024;
Chris@16 48 m_wlen = 2048;
Chris@16 49 } else if (ratio < 0.8) {
Chris@16 50 m_n1 = 512;
Chris@16 51 } else {
Chris@16 52 m_n1 = 256;
Chris@16 53 }
Chris@16 54 if (m_sharpen) {
Chris@16 55 m_wlen = 2048;
Chris@16 56 }
Chris@15 57 m_n2 = m_n1 * ratio;
Chris@15 58 } else {
Chris@16 59 if (ratio > 2) {
Chris@16 60 m_n2 = 512;
Chris@16 61 m_wlen = 4096;
Chris@16 62 } else if (ratio > 1.6) {
Chris@16 63 m_n2 = 384;
Chris@16 64 m_wlen = 2048;
Chris@16 65 } else {
Chris@16 66 m_n2 = 256;
Chris@16 67 }
Chris@16 68 if (m_sharpen) {
Chris@16 69 if (m_wlen < 2048) m_wlen = 2048;
Chris@16 70 }
Chris@15 71 m_n1 = m_n2 / ratio;
Chris@15 72 }
Chris@22 73
Chris@22 74 m_transientThreshold = m_wlen / 4.5;
Chris@16 75
Chris@20 76 m_analysisWindow = new Window<float>(HanningWindow, m_wlen);
Chris@20 77 m_synthesisWindow = new Window<float>(HanningWindow, m_wlen);
Chris@15 78
Chris@16 79 m_prevPhase = new float *[m_channels];
Chris@16 80 m_prevAdjustedPhase = new float *[m_channels];
Chris@15 81
Chris@20 82 m_prevTransientMag = (float *)fftwf_malloc(sizeof(float) * (m_wlen / 2 + 1));
Chris@21 83 m_prevTransientScore = 0;
Chris@20 84 m_prevTransient = false;
Chris@20 85
Chris@20 86 m_tempbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen);
Chris@20 87
Chris@20 88 m_time = new float *[m_channels];
Chris@20 89 m_freq = new fftwf_complex *[m_channels];
Chris@20 90 m_plan = new fftwf_plan[m_channels];
Chris@20 91 m_iplan = new fftwf_plan[m_channels];
Chris@0 92
Chris@16 93 m_inbuf = new RingBuffer<float> *[m_channels];
Chris@16 94 m_outbuf = new RingBuffer<float> *[m_channels];
Chris@16 95 m_mashbuf = new float *[m_channels];
Chris@16 96
Chris@16 97 m_modulationbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen);
Chris@16 98
Chris@16 99 for (size_t c = 0; c < m_channels; ++c) {
Chris@16 100
Chris@20 101 m_prevPhase[c] = (float *)fftwf_malloc(sizeof(float) * (m_wlen / 2 + 1));
Chris@20 102 m_prevAdjustedPhase[c] = (float *)fftwf_malloc(sizeof(float) * (m_wlen / 2 + 1));
Chris@16 103
Chris@20 104 m_time[c] = (float *)fftwf_malloc(sizeof(float) * m_wlen);
Chris@20 105 m_freq[c] = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) *
Chris@20 106 (m_wlen / 2 + 1));
Chris@20 107
Chris@20 108 m_plan[c] = fftwf_plan_dft_r2c_1d(m_wlen, m_time[c], m_freq[c], FFTW_ESTIMATE);
Chris@20 109 m_iplan[c] = fftwf_plan_dft_c2r_1d(m_wlen, m_freq[c], m_time[c], FFTW_ESTIMATE);
Chris@16 110
Chris@16 111 m_inbuf[c] = new RingBuffer<float>(m_wlen);
Chris@16 112 m_outbuf[c] = new RingBuffer<float>
Chris@16 113 (lrintf((maxProcessInputBlockSize + m_wlen) * ratio));
Chris@16 114
Chris@16 115 m_mashbuf[c] = (float *)fftwf_malloc(sizeof(float) * m_wlen);
Chris@16 116
Chris@16 117 for (int i = 0; i < m_wlen; ++i) {
Chris@16 118 m_mashbuf[c][i] = 0.0;
Chris@20 119 }
Chris@20 120
Chris@20 121 for (int i = 0; i <= m_wlen/2; ++i) {
Chris@16 122 m_prevPhase[c][i] = 0.0;
Chris@16 123 m_prevAdjustedPhase[c][i] = 0.0;
Chris@16 124 }
Chris@16 125 }
Chris@16 126
Chris@0 127 for (int i = 0; i < m_wlen; ++i) {
Chris@16 128 m_modulationbuf[i] = 0.0;
Chris@0 129 }
Chris@16 130
Chris@20 131 for (int i = 0; i <= m_wlen/2; ++i) {
Chris@20 132 m_prevTransientMag[i] = 0.0;
Chris@20 133 }
Chris@20 134
Chris@16 135 std::cerr << "PhaseVocoderTimeStretcher: channels = " << channels
Chris@16 136 << ", ratio = " << ratio
Chris@16 137 << ", n1 = " << m_n1 << ", n2 = " << m_n2 << ", wlen = "
Chris@16 138 << m_wlen << ", max = " << maxProcessInputBlockSize
Chris@16 139 << ", outbuflen = " << m_outbuf[0]->getSize() << std::endl;
Chris@0 140 }
Chris@0 141
Chris@14 142 PhaseVocoderTimeStretcher::~PhaseVocoderTimeStretcher()
Chris@0 143 {
Chris@14 144 std::cerr << "PhaseVocoderTimeStretcher::~PhaseVocoderTimeStretcher" << std::endl;
Chris@0 145
Chris@20 146 for (size_t c = 0; c < m_channels; ++c) {
Chris@0 147
Chris@20 148 fftwf_destroy_plan(m_plan[c]);
Chris@20 149 fftwf_destroy_plan(m_iplan[c]);
Chris@16 150
Chris@20 151 fftwf_free(m_time[c]);
Chris@20 152 fftwf_free(m_freq[c]);
Chris@16 153
Chris@16 154 fftwf_free(m_mashbuf[c]);
Chris@16 155 fftwf_free(m_prevPhase[c]);
Chris@16 156 fftwf_free(m_prevAdjustedPhase[c]);
Chris@16 157
Chris@16 158 delete m_inbuf[c];
Chris@16 159 delete m_outbuf[c];
Chris@16 160 }
Chris@16 161
Chris@20 162 fftwf_free(m_tempbuf);
Chris@13 163 fftwf_free(m_modulationbuf);
Chris@20 164 fftwf_free(m_prevTransientMag);
Chris@0 165
Chris@16 166 delete[] m_prevPhase;
Chris@16 167 delete[] m_prevAdjustedPhase;
Chris@16 168 delete[] m_inbuf;
Chris@16 169 delete[] m_outbuf;
Chris@16 170 delete[] m_mashbuf;
Chris@20 171 delete[] m_time;
Chris@20 172 delete[] m_freq;
Chris@20 173 delete[] m_plan;
Chris@20 174 delete[] m_iplan;
Chris@15 175
Chris@20 176 delete m_analysisWindow;
Chris@20 177 delete m_synthesisWindow;
Chris@0 178 }
Chris@0 179
Chris@0 180 size_t
Chris@14 181 PhaseVocoderTimeStretcher::getProcessingLatency() const
Chris@0 182 {
Chris@0 183 return getWindowSize() - getInputIncrement();
Chris@0 184 }
Chris@0 185
Chris@0 186 void
Chris@16 187 PhaseVocoderTimeStretcher::process(float **input, float **output, size_t samples)
Chris@16 188 {
Chris@16 189 putInput(input, samples);
Chris@16 190 getOutput(output, lrintf(samples * m_ratio));
Chris@16 191 }
Chris@16 192
Chris@16 193 size_t
Chris@16 194 PhaseVocoderTimeStretcher::getRequiredInputSamples() const
Chris@16 195 {
Chris@16 196 if (m_inbuf[0]->getReadSpace() >= m_wlen) return 0;
Chris@16 197 return m_wlen - m_inbuf[0]->getReadSpace();
Chris@16 198 }
Chris@16 199
Chris@16 200 void
Chris@16 201 PhaseVocoderTimeStretcher::putInput(float **input, size_t samples)
Chris@0 202 {
Chris@0 203 // We need to add samples from input to our internal buffer. When
Chris@0 204 // we have m_windowSize samples in the buffer, we can process it,
Chris@0 205 // move the samples back by m_n1 and write the output onto our
Chris@0 206 // internal output buffer. If we have (samples * ratio) samples
Chris@0 207 // in that, we can write m_n2 of them back to output and return
Chris@0 208 // (otherwise we have to write zeroes).
Chris@0 209
Chris@0 210 // When we process, we write m_wlen to our fixed output buffer
Chris@0 211 // (m_mashbuf). We then pull out the first m_n2 samples from that
Chris@0 212 // buffer, push them into the output ring buffer, and shift
Chris@0 213 // m_mashbuf left by that amount.
Chris@0 214
Chris@0 215 // The processing latency is then m_wlen - m_n2.
Chris@0 216
Chris@0 217 size_t consumed = 0;
Chris@0 218
Chris@0 219 while (consumed < samples) {
Chris@0 220
Chris@16 221 size_t writable = m_inbuf[0]->getWriteSpace();
Chris@0 222 writable = std::min(writable, samples - consumed);
Chris@0 223
Chris@0 224 if (writable == 0) {
Chris@0 225 //!!! then what? I don't think this should happen, but
Chris@16 226 std::cerr << "WARNING: PhaseVocoderTimeStretcher::putInput: writable == 0" << std::endl;
Chris@0 227 break;
Chris@0 228 }
Chris@0 229
Chris@14 230 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@0 231 std::cerr << "writing " << writable << " from index " << consumed << " to inbuf, consumed will be " << consumed + writable << std::endl;
Chris@0 232 #endif
Chris@16 233
Chris@16 234 for (size_t c = 0; c < m_channels; ++c) {
Chris@16 235 m_inbuf[c]->write(input[c] + consumed, writable);
Chris@16 236 }
Chris@0 237 consumed += writable;
Chris@0 238
Chris@16 239 while (m_inbuf[0]->getReadSpace() >= m_wlen &&
Chris@16 240 m_outbuf[0]->getWriteSpace() >= m_n2) {
Chris@0 241
Chris@0 242 // We know we have at least m_wlen samples available
Chris@16 243 // in m_inbuf. We need to peek m_wlen of them for
Chris@0 244 // processing, and then read m_n1 to advance the read
Chris@0 245 // pointer.
Chris@16 246
Chris@20 247 for (size_t c = 0; c < m_channels; ++c) {
Chris@20 248
Chris@20 249 size_t got = m_inbuf[c]->peek(m_tempbuf, m_wlen);
Chris@20 250 assert(got == m_wlen);
Chris@20 251
Chris@20 252 analyseBlock(c, m_tempbuf);
Chris@20 253 }
Chris@20 254
Chris@20 255 bool transient = false;
Chris@20 256 if (m_sharpen) transient = isTransient();
Chris@20 257
Chris@16 258 size_t n2 = m_n2;
Chris@20 259
Chris@20 260 if (transient) {
Chris@20 261 n2 = m_n1;
Chris@20 262 }
Chris@0 263
Chris@21 264 ++m_totalCount;
Chris@21 265 if (transient) ++m_transientCount;
Chris@21 266 m_n2sum += n2;
Chris@21 267
Chris@21 268 // std::cerr << "ratio for last 10: " <<last10num << "/" << (10 * m_n1) << " = " << float(last10num) / float(10 * m_n1) << " (should be " << m_ratio << ")" << std::endl;
Chris@21 269
Chris@21 270 if (m_totalCount > 50 && m_transientCount < m_totalCount) {
Chris@21 271
Chris@21 272 int fixed = lrintf(m_transientCount * m_n1);
Chris@21 273 int squashy = m_n2sum - fixed;
Chris@21 274
Chris@21 275 int idealTotal = lrintf(m_totalCount * m_n1 * m_ratio);
Chris@21 276 int idealSquashy = idealTotal - fixed;
Chris@21 277
Chris@21 278 int squashyCount = m_totalCount - m_transientCount;
Chris@21 279
Chris@21 280 n2 = lrintf(idealSquashy / squashyCount);
Chris@21 281
Chris@21 282 if (n2 != m_n2) {
Chris@21 283 std::cerr << m_n2 << " -> " << n2 << std::endl;
Chris@21 284 }
Chris@21 285 }
Chris@21 286
Chris@16 287 for (size_t c = 0; c < m_channels; ++c) {
Chris@16 288
Chris@20 289 synthesiseBlock(c, m_mashbuf[c],
Chris@20 290 c == 0 ? m_modulationbuf : 0,
Chris@20 291 m_prevTransient ? m_n1 : m_n2);
Chris@16 292
Chris@0 293
Chris@14 294 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@16 295 std::cerr << "writing first " << m_n2 << " from mashbuf, skipping " << m_n1 << " on inbuf " << std::endl;
Chris@0 296 #endif
Chris@16 297 m_inbuf[c]->skip(m_n1);
Chris@13 298
Chris@16 299 for (size_t i = 0; i < n2; ++i) {
Chris@16 300 if (m_modulationbuf[i] > 0.f) {
Chris@16 301 m_mashbuf[c][i] /= m_modulationbuf[i];
Chris@16 302 }
Chris@16 303 }
Chris@16 304
Chris@16 305 m_outbuf[c]->write(m_mashbuf[c], n2);
Chris@16 306
Chris@16 307 for (size_t i = 0; i < m_wlen - n2; ++i) {
Chris@16 308 m_mashbuf[c][i] = m_mashbuf[c][i + n2];
Chris@16 309 }
Chris@16 310
Chris@16 311 for (size_t i = m_wlen - n2; i < m_wlen; ++i) {
Chris@16 312 m_mashbuf[c][i] = 0.0f;
Chris@13 313 }
Chris@13 314 }
Chris@13 315
Chris@20 316 m_prevTransient = transient;
Chris@17 317
Chris@16 318 for (size_t i = 0; i < m_wlen - n2; ++i) {
Chris@16 319 m_modulationbuf[i] = m_modulationbuf[i + n2];
Chris@0 320 }
Chris@13 321
Chris@16 322 for (size_t i = m_wlen - n2; i < m_wlen; ++i) {
Chris@13 323 m_modulationbuf[i] = 0.0f;
Chris@0 324 }
Chris@21 325
Chris@21 326 if (!transient) m_n2 = n2;
Chris@0 327 }
Chris@0 328
Chris@0 329
Chris@14 330 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@16 331 std::cerr << "loop ended: inbuf read space " << m_inbuf[0]->getReadSpace() << ", outbuf write space " << m_outbuf[0]->getWriteSpace() << std::endl;
Chris@0 332 #endif
Chris@0 333 }
Chris@0 334
Chris@16 335 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@16 336 std::cerr << "PhaseVocoderTimeStretcher::putInput returning" << std::endl;
Chris@16 337 #endif
Chris@21 338
Chris@21 339 // std::cerr << "ratio: nominal: " << getRatio() << " actual: "
Chris@21 340 // << m_total2 << "/" << m_total1 << " = " << float(m_total2) / float(m_total1) << " ideal: " << m_ratio << std::endl;
Chris@16 341 }
Chris@12 342
Chris@16 343 size_t
Chris@16 344 PhaseVocoderTimeStretcher::getAvailableOutputSamples() const
Chris@16 345 {
Chris@16 346 return m_outbuf[0]->getReadSpace();
Chris@16 347 }
Chris@16 348
Chris@16 349 void
Chris@16 350 PhaseVocoderTimeStretcher::getOutput(float **output, size_t samples)
Chris@16 351 {
Chris@16 352 if (m_outbuf[0]->getReadSpace() < samples) {
Chris@16 353 std::cerr << "WARNING: PhaseVocoderTimeStretcher::getOutput: not enough data (yet?) (" << m_outbuf[0]->getReadSpace() << " < " << samples << ")" << std::endl;
Chris@16 354 size_t fill = samples - m_outbuf[0]->getReadSpace();
Chris@16 355 for (size_t c = 0; c < m_channels; ++c) {
Chris@16 356 for (size_t i = 0; i < fill; ++i) {
Chris@16 357 output[c][i] = 0.0;
Chris@16 358 }
Chris@16 359 m_outbuf[c]->read(output[c] + fill, m_outbuf[c]->getReadSpace());
Chris@16 360 }
Chris@0 361 } else {
Chris@14 362 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@16 363 std::cerr << "enough data - writing " << samples << " from outbuf" << std::endl;
Chris@0 364 #endif
Chris@16 365 for (size_t c = 0; c < m_channels; ++c) {
Chris@16 366 m_outbuf[c]->read(output[c], samples);
Chris@16 367 }
Chris@0 368 }
Chris@0 369
Chris@14 370 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@16 371 std::cerr << "PhaseVocoderTimeStretcher::getOutput returning" << std::endl;
Chris@0 372 #endif
Chris@0 373 }
Chris@0 374
Chris@20 375 void
Chris@20 376 PhaseVocoderTimeStretcher::analyseBlock(size_t c, float *buf)
Chris@0 377 {
Chris@0 378 size_t i;
Chris@0 379
Chris@20 380 // buf contains m_wlen samples
Chris@0 381
Chris@14 382 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@20 383 std::cerr << "PhaseVocoderTimeStretcher::analyseBlock (channel " << c << ")" << std::endl;
Chris@0 384 #endif
Chris@0 385
Chris@20 386 m_analysisWindow->cut(buf);
Chris@0 387
Chris@0 388 for (i = 0; i < m_wlen/2; ++i) {
Chris@0 389 float temp = buf[i];
Chris@0 390 buf[i] = buf[i + m_wlen/2];
Chris@0 391 buf[i + m_wlen/2] = temp;
Chris@0 392 }
Chris@19 393
Chris@0 394 for (i = 0; i < m_wlen; ++i) {
Chris@20 395 m_time[c][i] = buf[i];
Chris@0 396 }
Chris@0 397
Chris@20 398 fftwf_execute(m_plan[c]); // m_time -> m_freq
Chris@20 399 }
Chris@0 400
Chris@20 401 bool
Chris@20 402 PhaseVocoderTimeStretcher::isTransient()
Chris@20 403 {
Chris@20 404 int count = 0;
Chris@16 405
Chris@20 406 for (int i = 0; i <= m_wlen/2; ++i) {
Chris@16 407
Chris@20 408 float real = 0.f, imag = 0.f;
Chris@20 409
Chris@20 410 for (size_t c = 0; c < m_channels; ++c) {
Chris@20 411 real += m_freq[c][i][0];
Chris@20 412 imag += m_freq[c][i][1];
Chris@16 413 }
Chris@16 414
Chris@20 415 float sqrmag = (real * real + imag * imag);
Chris@20 416
Chris@20 417 if (m_prevTransientMag[i] > 0.f) {
Chris@20 418 float diff = 10.f * log10f(sqrmag / m_prevTransientMag[i]);
Chris@20 419 if (diff > 3.f) ++count;
Chris@20 420 }
Chris@20 421
Chris@20 422 m_prevTransientMag[i] = sqrmag;
Chris@16 423 }
Chris@16 424
Chris@20 425 bool isTransient = false;
Chris@16 426
Chris@22 427 if (count > m_transientThreshold &&
Chris@21 428 count > m_prevTransientScore * 1.2) {
Chris@20 429 isTransient = true;
Chris@21 430 std::cerr << "isTransient (count = " << count << ", prev = " << m_prevTransientScore << ")" << std::endl;
Chris@20 431 }
Chris@16 432
Chris@21 433 m_prevTransientScore = count;
Chris@20 434
Chris@20 435 return isTransient;
Chris@20 436 }
Chris@20 437
Chris@20 438 void
Chris@20 439 PhaseVocoderTimeStretcher::synthesiseBlock(size_t c,
Chris@20 440 float *out,
Chris@20 441 float *modulation,
Chris@20 442 size_t lastStep)
Chris@20 443 {
Chris@20 444 int i;
Chris@20 445
Chris@20 446 bool unchanged = (lastStep == m_n1);
Chris@20 447
Chris@20 448 for (i = 0; i <= m_wlen/2; ++i) {
Chris@0 449
Chris@20 450 float phase = princargf(atan2f(m_freq[c][i][1], m_freq[c][i][0]));
Chris@19 451 float adjustedPhase = phase;
Chris@12 452
Chris@20 453 if (!unchanged) {
Chris@16 454
Chris@20 455 float mag = sqrtf(m_freq[c][i][0] * m_freq[c][i][0] +
Chris@20 456 m_freq[c][i][1] * m_freq[c][i][1]);
Chris@19 457
Chris@20 458 float omega = (2 * M_PI * m_n1 * i) / m_wlen;
Chris@20 459
Chris@20 460 float expectedPhase = m_prevPhase[c][i] + omega;
Chris@20 461
Chris@20 462 float phaseError = princargf(phase - expectedPhase);
Chris@20 463
Chris@20 464 float phaseIncrement = (omega + phaseError) / m_n1;
Chris@20 465
Chris@20 466 adjustedPhase = m_prevAdjustedPhase[c][i] +
Chris@20 467 lastStep * phaseIncrement;
Chris@20 468
Chris@20 469 float real = mag * cosf(adjustedPhase);
Chris@20 470 float imag = mag * sinf(adjustedPhase);
Chris@20 471 m_freq[c][i][0] = real;
Chris@20 472 m_freq[c][i][1] = imag;
Chris@19 473 }
Chris@19 474
Chris@16 475 m_prevPhase[c][i] = phase;
Chris@16 476 m_prevAdjustedPhase[c][i] = adjustedPhase;
Chris@0 477 }
Chris@20 478
Chris@20 479 fftwf_execute(m_iplan[c]); // m_freq -> m_time, inverse fft
Chris@19 480
Chris@0 481 for (i = 0; i < m_wlen/2; ++i) {
Chris@20 482 float temp = m_time[c][i];
Chris@20 483 m_time[c][i] = m_time[c][i + m_wlen/2];
Chris@20 484 m_time[c][i + m_wlen/2] = temp;
Chris@20 485 }
Chris@20 486
Chris@20 487 for (i = 0; i < m_wlen; ++i) {
Chris@20 488 m_time[c][i] = m_time[c][i] / m_wlen;
Chris@0 489 }
Chris@15 490
Chris@20 491 m_synthesisWindow->cut(m_time[c]);
Chris@19 492
Chris@19 493 for (i = 0; i < m_wlen; ++i) {
Chris@20 494 out[i] += m_time[c][i];
Chris@0 495 }
Chris@16 496
Chris@16 497 if (modulation) {
Chris@16 498
Chris@20 499 float area = m_analysisWindow->getArea();
Chris@16 500
Chris@16 501 for (i = 0; i < m_wlen; ++i) {
Chris@20 502 float val = m_synthesisWindow->getValue(i);
Chris@16 503 modulation[i] += val * area;
Chris@16 504 }
Chris@16 505 }
Chris@0 506 }
Chris@15 507
Chris@20 508