annotate audioio/PhaseVocoderTimeStretcher.cpp @ 21:7da85e0b85e9

* Add some internal feedback to the time stretcher to try to make it maintain tempo within variable timestretching situations -- not ideal but perhaps better than nothing. * Better tooltip text for play speeed control; make play sharpening control remember its last state
author Chris Cannam
date Thu, 14 Sep 2006 16:08:23 +0000
parents e125f0dde7a3
children 80126455d169
rev   line source
Chris@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@0 2
Chris@0 3 /*
Chris@0 4 Sonic Visualiser
Chris@0 5 An audio file viewer and annotation editor.
Chris@0 6 Centre for Digital Music, Queen Mary, University of London.
Chris@0 7 This file copyright 2006 Chris Cannam.
Chris@0 8
Chris@0 9 This program is free software; you can redistribute it and/or
Chris@0 10 modify it under the terms of the GNU General Public License as
Chris@0 11 published by the Free Software Foundation; either version 2 of the
Chris@0 12 License, or (at your option) any later version. See the file
Chris@0 13 COPYING included with this distribution for more information.
Chris@0 14 */
Chris@0 15
Chris@14 16 #include "PhaseVocoderTimeStretcher.h"
Chris@0 17
Chris@0 18 #include <iostream>
Chris@0 19 #include <cassert>
Chris@0 20
Chris@14 21 //#define DEBUG_PHASE_VOCODER_TIME_STRETCHER 1
Chris@0 22
Chris@16 23 PhaseVocoderTimeStretcher::PhaseVocoderTimeStretcher(size_t channels,
Chris@16 24 float ratio,
Chris@16 25 bool sharpen,
Chris@15 26 size_t maxProcessInputBlockSize) :
Chris@16 27 m_channels(channels),
Chris@16 28 m_ratio(ratio),
Chris@21 29 m_sharpen(sharpen),
Chris@21 30 m_totalCount(0),
Chris@21 31 m_transientCount(0),
Chris@21 32 m_n2sum(0)
Chris@0 33 {
Chris@16 34 m_wlen = 1024;
Chris@16 35
Chris@21 36 //!!! In transient sharpening mode, we need to pick the window
Chris@21 37 //length so as to be more or less fixed in audio duration (i.e. we
Chris@21 38 //need to know the sample rate)
Chris@21 39
Chris@15 40 if (ratio < 1) {
Chris@16 41 if (ratio < 0.4) {
Chris@16 42 m_n1 = 1024;
Chris@16 43 m_wlen = 2048;
Chris@16 44 } else if (ratio < 0.8) {
Chris@16 45 m_n1 = 512;
Chris@16 46 } else {
Chris@16 47 m_n1 = 256;
Chris@16 48 }
Chris@16 49 if (m_sharpen) {
Chris@16 50 m_wlen = 2048;
Chris@16 51 }
Chris@15 52 m_n2 = m_n1 * ratio;
Chris@15 53 } else {
Chris@16 54 if (ratio > 2) {
Chris@16 55 m_n2 = 512;
Chris@16 56 m_wlen = 4096;
Chris@16 57 } else if (ratio > 1.6) {
Chris@16 58 m_n2 = 384;
Chris@16 59 m_wlen = 2048;
Chris@16 60 } else {
Chris@16 61 m_n2 = 256;
Chris@16 62 }
Chris@16 63 if (m_sharpen) {
Chris@16 64 if (m_wlen < 2048) m_wlen = 2048;
Chris@16 65 }
Chris@15 66 m_n1 = m_n2 / ratio;
Chris@15 67 }
Chris@16 68
Chris@20 69 m_analysisWindow = new Window<float>(HanningWindow, m_wlen);
Chris@20 70 m_synthesisWindow = new Window<float>(HanningWindow, m_wlen);
Chris@15 71
Chris@16 72 m_prevPhase = new float *[m_channels];
Chris@16 73 m_prevAdjustedPhase = new float *[m_channels];
Chris@15 74
Chris@20 75 m_prevTransientMag = (float *)fftwf_malloc(sizeof(float) * (m_wlen / 2 + 1));
Chris@21 76 m_prevTransientScore = 0;
Chris@20 77 m_prevTransient = false;
Chris@20 78
Chris@20 79 m_tempbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen);
Chris@20 80
Chris@20 81 m_time = new float *[m_channels];
Chris@20 82 m_freq = new fftwf_complex *[m_channels];
Chris@20 83 m_plan = new fftwf_plan[m_channels];
Chris@20 84 m_iplan = new fftwf_plan[m_channels];
Chris@0 85
Chris@16 86 m_inbuf = new RingBuffer<float> *[m_channels];
Chris@16 87 m_outbuf = new RingBuffer<float> *[m_channels];
Chris@16 88 m_mashbuf = new float *[m_channels];
Chris@16 89
Chris@16 90 m_modulationbuf = (float *)fftwf_malloc(sizeof(float) * m_wlen);
Chris@16 91
Chris@16 92 for (size_t c = 0; c < m_channels; ++c) {
Chris@16 93
Chris@20 94 m_prevPhase[c] = (float *)fftwf_malloc(sizeof(float) * (m_wlen / 2 + 1));
Chris@20 95 m_prevAdjustedPhase[c] = (float *)fftwf_malloc(sizeof(float) * (m_wlen / 2 + 1));
Chris@16 96
Chris@20 97 m_time[c] = (float *)fftwf_malloc(sizeof(float) * m_wlen);
Chris@20 98 m_freq[c] = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) *
Chris@20 99 (m_wlen / 2 + 1));
Chris@20 100
Chris@20 101 m_plan[c] = fftwf_plan_dft_r2c_1d(m_wlen, m_time[c], m_freq[c], FFTW_ESTIMATE);
Chris@20 102 m_iplan[c] = fftwf_plan_dft_c2r_1d(m_wlen, m_freq[c], m_time[c], FFTW_ESTIMATE);
Chris@16 103
Chris@16 104 m_inbuf[c] = new RingBuffer<float>(m_wlen);
Chris@16 105 m_outbuf[c] = new RingBuffer<float>
Chris@16 106 (lrintf((maxProcessInputBlockSize + m_wlen) * ratio));
Chris@16 107
Chris@16 108 m_mashbuf[c] = (float *)fftwf_malloc(sizeof(float) * m_wlen);
Chris@16 109
Chris@16 110 for (int i = 0; i < m_wlen; ++i) {
Chris@16 111 m_mashbuf[c][i] = 0.0;
Chris@20 112 }
Chris@20 113
Chris@20 114 for (int i = 0; i <= m_wlen/2; ++i) {
Chris@16 115 m_prevPhase[c][i] = 0.0;
Chris@16 116 m_prevAdjustedPhase[c][i] = 0.0;
Chris@16 117 }
Chris@16 118 }
Chris@16 119
Chris@0 120 for (int i = 0; i < m_wlen; ++i) {
Chris@16 121 m_modulationbuf[i] = 0.0;
Chris@0 122 }
Chris@16 123
Chris@20 124 for (int i = 0; i <= m_wlen/2; ++i) {
Chris@20 125 m_prevTransientMag[i] = 0.0;
Chris@20 126 }
Chris@20 127
Chris@16 128 std::cerr << "PhaseVocoderTimeStretcher: channels = " << channels
Chris@16 129 << ", ratio = " << ratio
Chris@16 130 << ", n1 = " << m_n1 << ", n2 = " << m_n2 << ", wlen = "
Chris@16 131 << m_wlen << ", max = " << maxProcessInputBlockSize
Chris@16 132 << ", outbuflen = " << m_outbuf[0]->getSize() << std::endl;
Chris@0 133 }
Chris@0 134
Chris@14 135 PhaseVocoderTimeStretcher::~PhaseVocoderTimeStretcher()
Chris@0 136 {
Chris@14 137 std::cerr << "PhaseVocoderTimeStretcher::~PhaseVocoderTimeStretcher" << std::endl;
Chris@0 138
Chris@20 139 for (size_t c = 0; c < m_channels; ++c) {
Chris@0 140
Chris@20 141 fftwf_destroy_plan(m_plan[c]);
Chris@20 142 fftwf_destroy_plan(m_iplan[c]);
Chris@16 143
Chris@20 144 fftwf_free(m_time[c]);
Chris@20 145 fftwf_free(m_freq[c]);
Chris@16 146
Chris@16 147 fftwf_free(m_mashbuf[c]);
Chris@16 148 fftwf_free(m_prevPhase[c]);
Chris@16 149 fftwf_free(m_prevAdjustedPhase[c]);
Chris@16 150
Chris@16 151 delete m_inbuf[c];
Chris@16 152 delete m_outbuf[c];
Chris@16 153 }
Chris@16 154
Chris@20 155 fftwf_free(m_tempbuf);
Chris@13 156 fftwf_free(m_modulationbuf);
Chris@20 157 fftwf_free(m_prevTransientMag);
Chris@0 158
Chris@16 159 delete[] m_prevPhase;
Chris@16 160 delete[] m_prevAdjustedPhase;
Chris@16 161 delete[] m_inbuf;
Chris@16 162 delete[] m_outbuf;
Chris@16 163 delete[] m_mashbuf;
Chris@20 164 delete[] m_time;
Chris@20 165 delete[] m_freq;
Chris@20 166 delete[] m_plan;
Chris@20 167 delete[] m_iplan;
Chris@15 168
Chris@20 169 delete m_analysisWindow;
Chris@20 170 delete m_synthesisWindow;
Chris@0 171 }
Chris@0 172
Chris@0 173 size_t
Chris@14 174 PhaseVocoderTimeStretcher::getProcessingLatency() const
Chris@0 175 {
Chris@0 176 return getWindowSize() - getInputIncrement();
Chris@0 177 }
Chris@0 178
Chris@0 179 void
Chris@16 180 PhaseVocoderTimeStretcher::process(float **input, float **output, size_t samples)
Chris@16 181 {
Chris@16 182 putInput(input, samples);
Chris@16 183 getOutput(output, lrintf(samples * m_ratio));
Chris@16 184 }
Chris@16 185
Chris@16 186 size_t
Chris@16 187 PhaseVocoderTimeStretcher::getRequiredInputSamples() const
Chris@16 188 {
Chris@16 189 if (m_inbuf[0]->getReadSpace() >= m_wlen) return 0;
Chris@16 190 return m_wlen - m_inbuf[0]->getReadSpace();
Chris@16 191 }
Chris@16 192
Chris@16 193 void
Chris@16 194 PhaseVocoderTimeStretcher::putInput(float **input, size_t samples)
Chris@0 195 {
Chris@0 196 // We need to add samples from input to our internal buffer. When
Chris@0 197 // we have m_windowSize samples in the buffer, we can process it,
Chris@0 198 // move the samples back by m_n1 and write the output onto our
Chris@0 199 // internal output buffer. If we have (samples * ratio) samples
Chris@0 200 // in that, we can write m_n2 of them back to output and return
Chris@0 201 // (otherwise we have to write zeroes).
Chris@0 202
Chris@0 203 // When we process, we write m_wlen to our fixed output buffer
Chris@0 204 // (m_mashbuf). We then pull out the first m_n2 samples from that
Chris@0 205 // buffer, push them into the output ring buffer, and shift
Chris@0 206 // m_mashbuf left by that amount.
Chris@0 207
Chris@0 208 // The processing latency is then m_wlen - m_n2.
Chris@0 209
Chris@0 210 size_t consumed = 0;
Chris@0 211
Chris@0 212 while (consumed < samples) {
Chris@0 213
Chris@16 214 size_t writable = m_inbuf[0]->getWriteSpace();
Chris@0 215 writable = std::min(writable, samples - consumed);
Chris@0 216
Chris@0 217 if (writable == 0) {
Chris@0 218 //!!! then what? I don't think this should happen, but
Chris@16 219 std::cerr << "WARNING: PhaseVocoderTimeStretcher::putInput: writable == 0" << std::endl;
Chris@0 220 break;
Chris@0 221 }
Chris@0 222
Chris@14 223 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@0 224 std::cerr << "writing " << writable << " from index " << consumed << " to inbuf, consumed will be " << consumed + writable << std::endl;
Chris@0 225 #endif
Chris@16 226
Chris@16 227 for (size_t c = 0; c < m_channels; ++c) {
Chris@16 228 m_inbuf[c]->write(input[c] + consumed, writable);
Chris@16 229 }
Chris@0 230 consumed += writable;
Chris@0 231
Chris@16 232 while (m_inbuf[0]->getReadSpace() >= m_wlen &&
Chris@16 233 m_outbuf[0]->getWriteSpace() >= m_n2) {
Chris@0 234
Chris@0 235 // We know we have at least m_wlen samples available
Chris@16 236 // in m_inbuf. We need to peek m_wlen of them for
Chris@0 237 // processing, and then read m_n1 to advance the read
Chris@0 238 // pointer.
Chris@16 239
Chris@20 240 for (size_t c = 0; c < m_channels; ++c) {
Chris@20 241
Chris@20 242 size_t got = m_inbuf[c]->peek(m_tempbuf, m_wlen);
Chris@20 243 assert(got == m_wlen);
Chris@20 244
Chris@20 245 analyseBlock(c, m_tempbuf);
Chris@20 246 }
Chris@20 247
Chris@20 248 bool transient = false;
Chris@20 249 if (m_sharpen) transient = isTransient();
Chris@20 250
Chris@16 251 size_t n2 = m_n2;
Chris@20 252
Chris@20 253 if (transient) {
Chris@20 254 n2 = m_n1;
Chris@20 255 }
Chris@0 256
Chris@21 257 ++m_totalCount;
Chris@21 258 if (transient) ++m_transientCount;
Chris@21 259 m_n2sum += n2;
Chris@21 260
Chris@21 261 // std::cerr << "ratio for last 10: " <<last10num << "/" << (10 * m_n1) << " = " << float(last10num) / float(10 * m_n1) << " (should be " << m_ratio << ")" << std::endl;
Chris@21 262
Chris@21 263 if (m_totalCount > 50 && m_transientCount < m_totalCount) {
Chris@21 264
Chris@21 265 int fixed = lrintf(m_transientCount * m_n1);
Chris@21 266 int squashy = m_n2sum - fixed;
Chris@21 267
Chris@21 268 int idealTotal = lrintf(m_totalCount * m_n1 * m_ratio);
Chris@21 269 int idealSquashy = idealTotal - fixed;
Chris@21 270
Chris@21 271 int squashyCount = m_totalCount - m_transientCount;
Chris@21 272
Chris@21 273 n2 = lrintf(idealSquashy / squashyCount);
Chris@21 274
Chris@21 275 if (n2 != m_n2) {
Chris@21 276 std::cerr << m_n2 << " -> " << n2 << std::endl;
Chris@21 277 }
Chris@21 278 }
Chris@21 279
Chris@16 280 for (size_t c = 0; c < m_channels; ++c) {
Chris@16 281
Chris@20 282 synthesiseBlock(c, m_mashbuf[c],
Chris@20 283 c == 0 ? m_modulationbuf : 0,
Chris@20 284 m_prevTransient ? m_n1 : m_n2);
Chris@16 285
Chris@0 286
Chris@14 287 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@16 288 std::cerr << "writing first " << m_n2 << " from mashbuf, skipping " << m_n1 << " on inbuf " << std::endl;
Chris@0 289 #endif
Chris@16 290 m_inbuf[c]->skip(m_n1);
Chris@13 291
Chris@16 292 for (size_t i = 0; i < n2; ++i) {
Chris@16 293 if (m_modulationbuf[i] > 0.f) {
Chris@16 294 m_mashbuf[c][i] /= m_modulationbuf[i];
Chris@16 295 }
Chris@16 296 }
Chris@16 297
Chris@16 298 m_outbuf[c]->write(m_mashbuf[c], n2);
Chris@16 299
Chris@16 300 for (size_t i = 0; i < m_wlen - n2; ++i) {
Chris@16 301 m_mashbuf[c][i] = m_mashbuf[c][i + n2];
Chris@16 302 }
Chris@16 303
Chris@16 304 for (size_t i = m_wlen - n2; i < m_wlen; ++i) {
Chris@16 305 m_mashbuf[c][i] = 0.0f;
Chris@13 306 }
Chris@13 307 }
Chris@13 308
Chris@20 309 m_prevTransient = transient;
Chris@17 310
Chris@16 311 for (size_t i = 0; i < m_wlen - n2; ++i) {
Chris@16 312 m_modulationbuf[i] = m_modulationbuf[i + n2];
Chris@0 313 }
Chris@13 314
Chris@16 315 for (size_t i = m_wlen - n2; i < m_wlen; ++i) {
Chris@13 316 m_modulationbuf[i] = 0.0f;
Chris@0 317 }
Chris@21 318
Chris@21 319 if (!transient) m_n2 = n2;
Chris@0 320 }
Chris@0 321
Chris@0 322
Chris@14 323 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@16 324 std::cerr << "loop ended: inbuf read space " << m_inbuf[0]->getReadSpace() << ", outbuf write space " << m_outbuf[0]->getWriteSpace() << std::endl;
Chris@0 325 #endif
Chris@0 326 }
Chris@0 327
Chris@16 328 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@16 329 std::cerr << "PhaseVocoderTimeStretcher::putInput returning" << std::endl;
Chris@16 330 #endif
Chris@21 331
Chris@21 332 // std::cerr << "ratio: nominal: " << getRatio() << " actual: "
Chris@21 333 // << m_total2 << "/" << m_total1 << " = " << float(m_total2) / float(m_total1) << " ideal: " << m_ratio << std::endl;
Chris@16 334 }
Chris@12 335
Chris@16 336 size_t
Chris@16 337 PhaseVocoderTimeStretcher::getAvailableOutputSamples() const
Chris@16 338 {
Chris@16 339 return m_outbuf[0]->getReadSpace();
Chris@16 340 }
Chris@16 341
Chris@16 342 void
Chris@16 343 PhaseVocoderTimeStretcher::getOutput(float **output, size_t samples)
Chris@16 344 {
Chris@16 345 if (m_outbuf[0]->getReadSpace() < samples) {
Chris@16 346 std::cerr << "WARNING: PhaseVocoderTimeStretcher::getOutput: not enough data (yet?) (" << m_outbuf[0]->getReadSpace() << " < " << samples << ")" << std::endl;
Chris@16 347 size_t fill = samples - m_outbuf[0]->getReadSpace();
Chris@16 348 for (size_t c = 0; c < m_channels; ++c) {
Chris@16 349 for (size_t i = 0; i < fill; ++i) {
Chris@16 350 output[c][i] = 0.0;
Chris@16 351 }
Chris@16 352 m_outbuf[c]->read(output[c] + fill, m_outbuf[c]->getReadSpace());
Chris@16 353 }
Chris@0 354 } else {
Chris@14 355 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@16 356 std::cerr << "enough data - writing " << samples << " from outbuf" << std::endl;
Chris@0 357 #endif
Chris@16 358 for (size_t c = 0; c < m_channels; ++c) {
Chris@16 359 m_outbuf[c]->read(output[c], samples);
Chris@16 360 }
Chris@0 361 }
Chris@0 362
Chris@14 363 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@16 364 std::cerr << "PhaseVocoderTimeStretcher::getOutput returning" << std::endl;
Chris@0 365 #endif
Chris@0 366 }
Chris@0 367
Chris@20 368 void
Chris@20 369 PhaseVocoderTimeStretcher::analyseBlock(size_t c, float *buf)
Chris@0 370 {
Chris@0 371 size_t i;
Chris@0 372
Chris@20 373 // buf contains m_wlen samples
Chris@0 374
Chris@14 375 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@20 376 std::cerr << "PhaseVocoderTimeStretcher::analyseBlock (channel " << c << ")" << std::endl;
Chris@0 377 #endif
Chris@0 378
Chris@20 379 m_analysisWindow->cut(buf);
Chris@0 380
Chris@0 381 for (i = 0; i < m_wlen/2; ++i) {
Chris@0 382 float temp = buf[i];
Chris@0 383 buf[i] = buf[i + m_wlen/2];
Chris@0 384 buf[i + m_wlen/2] = temp;
Chris@0 385 }
Chris@19 386
Chris@0 387 for (i = 0; i < m_wlen; ++i) {
Chris@20 388 m_time[c][i] = buf[i];
Chris@0 389 }
Chris@0 390
Chris@20 391 fftwf_execute(m_plan[c]); // m_time -> m_freq
Chris@20 392 }
Chris@0 393
Chris@20 394 bool
Chris@20 395 PhaseVocoderTimeStretcher::isTransient()
Chris@20 396 {
Chris@20 397 int count = 0;
Chris@16 398
Chris@20 399 for (int i = 0; i <= m_wlen/2; ++i) {
Chris@16 400
Chris@20 401 float real = 0.f, imag = 0.f;
Chris@20 402
Chris@20 403 for (size_t c = 0; c < m_channels; ++c) {
Chris@20 404 real += m_freq[c][i][0];
Chris@20 405 imag += m_freq[c][i][1];
Chris@16 406 }
Chris@16 407
Chris@20 408 float sqrmag = (real * real + imag * imag);
Chris@20 409
Chris@20 410 if (m_prevTransientMag[i] > 0.f) {
Chris@20 411 float diff = 10.f * log10f(sqrmag / m_prevTransientMag[i]);
Chris@20 412 if (diff > 3.f) ++count;
Chris@20 413 }
Chris@20 414
Chris@20 415 m_prevTransientMag[i] = sqrmag;
Chris@16 416 }
Chris@16 417
Chris@20 418 bool isTransient = false;
Chris@16 419
Chris@20 420 if (count > m_wlen / 4.5 && //!!!
Chris@21 421 count > m_prevTransientScore * 1.2) {
Chris@20 422 isTransient = true;
Chris@21 423 std::cerr << "isTransient (count = " << count << ", prev = " << m_prevTransientScore << ")" << std::endl;
Chris@20 424 }
Chris@16 425
Chris@21 426 m_prevTransientScore = count;
Chris@20 427
Chris@20 428 return isTransient;
Chris@20 429 }
Chris@20 430
Chris@20 431 void
Chris@20 432 PhaseVocoderTimeStretcher::synthesiseBlock(size_t c,
Chris@20 433 float *out,
Chris@20 434 float *modulation,
Chris@20 435 size_t lastStep)
Chris@20 436 {
Chris@20 437 int i;
Chris@20 438
Chris@20 439 bool unchanged = (lastStep == m_n1);
Chris@20 440
Chris@20 441 for (i = 0; i <= m_wlen/2; ++i) {
Chris@0 442
Chris@20 443 float phase = princargf(atan2f(m_freq[c][i][1], m_freq[c][i][0]));
Chris@19 444 float adjustedPhase = phase;
Chris@12 445
Chris@20 446 if (!unchanged) {
Chris@16 447
Chris@20 448 float mag = sqrtf(m_freq[c][i][0] * m_freq[c][i][0] +
Chris@20 449 m_freq[c][i][1] * m_freq[c][i][1]);
Chris@19 450
Chris@20 451 float omega = (2 * M_PI * m_n1 * i) / m_wlen;
Chris@20 452
Chris@20 453 float expectedPhase = m_prevPhase[c][i] + omega;
Chris@20 454
Chris@20 455 float phaseError = princargf(phase - expectedPhase);
Chris@20 456
Chris@20 457 float phaseIncrement = (omega + phaseError) / m_n1;
Chris@20 458
Chris@20 459 adjustedPhase = m_prevAdjustedPhase[c][i] +
Chris@20 460 lastStep * phaseIncrement;
Chris@20 461
Chris@20 462 float real = mag * cosf(adjustedPhase);
Chris@20 463 float imag = mag * sinf(adjustedPhase);
Chris@20 464 m_freq[c][i][0] = real;
Chris@20 465 m_freq[c][i][1] = imag;
Chris@19 466 }
Chris@19 467
Chris@16 468 m_prevPhase[c][i] = phase;
Chris@16 469 m_prevAdjustedPhase[c][i] = adjustedPhase;
Chris@0 470 }
Chris@20 471
Chris@20 472 fftwf_execute(m_iplan[c]); // m_freq -> m_time, inverse fft
Chris@19 473
Chris@0 474 for (i = 0; i < m_wlen/2; ++i) {
Chris@20 475 float temp = m_time[c][i];
Chris@20 476 m_time[c][i] = m_time[c][i + m_wlen/2];
Chris@20 477 m_time[c][i + m_wlen/2] = temp;
Chris@20 478 }
Chris@20 479
Chris@20 480 for (i = 0; i < m_wlen; ++i) {
Chris@20 481 m_time[c][i] = m_time[c][i] / m_wlen;
Chris@0 482 }
Chris@15 483
Chris@20 484 m_synthesisWindow->cut(m_time[c]);
Chris@19 485
Chris@19 486 for (i = 0; i < m_wlen; ++i) {
Chris@20 487 out[i] += m_time[c][i];
Chris@0 488 }
Chris@16 489
Chris@16 490 if (modulation) {
Chris@16 491
Chris@20 492 float area = m_analysisWindow->getArea();
Chris@16 493
Chris@16 494 for (i = 0; i < m_wlen; ++i) {
Chris@20 495 float val = m_synthesisWindow->getValue(i);
Chris@16 496 modulation[i] += val * area;
Chris@16 497 }
Chris@16 498 }
Chris@0 499 }
Chris@15 500
Chris@20 501