annotate audioio/PhaseVocoderTimeStretcher.cpp @ 151:152619d379e0

* Add a measurement mode tool -- no functionality yet
author Chris Cannam
date Wed, 13 Jun 2007 12:00:01 +0000
parents 006c90387f40
children 7310316bf74b
rev   line source
Chris@0 1 /* -*- c-basic-offset: 4 indent-tabs-mode: nil -*- vi:set ts=8 sts=4 sw=4: */
Chris@0 2
Chris@0 3 /*
Chris@0 4 Sonic Visualiser
Chris@0 5 An audio file viewer and annotation editor.
Chris@0 6 Centre for Digital Music, Queen Mary, University of London.
Chris@77 7 This file copyright 2006 Chris Cannam and QMUL.
Chris@0 8
Chris@0 9 This program is free software; you can redistribute it and/or
Chris@0 10 modify it under the terms of the GNU General Public License as
Chris@0 11 published by the Free Software Foundation; either version 2 of the
Chris@0 12 License, or (at your option) any later version. See the file
Chris@0 13 COPYING included with this distribution for more information.
Chris@0 14 */
Chris@0 15
Chris@14 16 #include "PhaseVocoderTimeStretcher.h"
Chris@0 17
Chris@0 18 #include <iostream>
Chris@0 19 #include <cassert>
Chris@0 20
Chris@25 21 #include <QMutexLocker>
Chris@25 22
Chris@14 23 //#define DEBUG_PHASE_VOCODER_TIME_STRETCHER 1
Chris@0 24
Chris@22 25 PhaseVocoderTimeStretcher::PhaseVocoderTimeStretcher(size_t sampleRate,
Chris@22 26 size_t channels,
Chris@16 27 float ratio,
Chris@16 28 bool sharpen,
Chris@31 29 size_t maxOutputBlockSize) :
Chris@22 30 m_sampleRate(sampleRate),
Chris@16 31 m_channels(channels),
Chris@31 32 m_maxOutputBlockSize(maxOutputBlockSize),
Chris@16 33 m_ratio(ratio),
Chris@21 34 m_sharpen(sharpen),
Chris@21 35 m_totalCount(0),
Chris@21 36 m_transientCount(0),
Chris@25 37 m_n2sum(0),
Chris@25 38 m_mutex(new QMutex())
Chris@0 39 {
Chris@25 40 initialise();
Chris@25 41 }
Chris@22 42
Chris@25 43 PhaseVocoderTimeStretcher::~PhaseVocoderTimeStretcher()
Chris@25 44 {
Chris@25 45 std::cerr << "PhaseVocoderTimeStretcher::~PhaseVocoderTimeStretcher" << std::endl;
Chris@21 46
Chris@25 47 cleanup();
Chris@25 48
Chris@25 49 delete m_mutex;
Chris@25 50 }
Chris@22 51
Chris@25 52 void
Chris@25 53 PhaseVocoderTimeStretcher::initialise()
Chris@25 54 {
Chris@25 55 std::cerr << "PhaseVocoderTimeStretcher::initialise" << std::endl;
Chris@25 56
Chris@25 57 calculateParameters();
Chris@16 58
Chris@20 59 m_analysisWindow = new Window<float>(HanningWindow, m_wlen);
Chris@20 60 m_synthesisWindow = new Window<float>(HanningWindow, m_wlen);
Chris@15 61
Chris@16 62 m_prevPhase = new float *[m_channels];
Chris@16 63 m_prevAdjustedPhase = new float *[m_channels];
Chris@15 64
Chris@100 65 m_prevTransientMag = (float *)fftf_malloc(sizeof(float) * (m_wlen / 2 + 1));
Chris@21 66 m_prevTransientScore = 0;
Chris@20 67 m_prevTransient = false;
Chris@20 68
Chris@100 69 m_tempbuf = (float *)fftf_malloc(sizeof(float) * m_wlen);
Chris@20 70
Chris@20 71 m_time = new float *[m_channels];
Chris@100 72 m_freq = new fftf_complex *[m_channels];
Chris@100 73 m_plan = new fftf_plan[m_channels];
Chris@100 74 m_iplan = new fftf_plan[m_channels];
Chris@0 75
Chris@16 76 m_inbuf = new RingBuffer<float> *[m_channels];
Chris@16 77 m_outbuf = new RingBuffer<float> *[m_channels];
Chris@16 78 m_mashbuf = new float *[m_channels];
Chris@16 79
Chris@100 80 m_modulationbuf = (float *)fftf_malloc(sizeof(float) * m_wlen);
Chris@16 81
Chris@16 82 for (size_t c = 0; c < m_channels; ++c) {
Chris@16 83
Chris@100 84 m_prevPhase[c] = (float *)fftf_malloc(sizeof(float) * (m_wlen / 2 + 1));
Chris@100 85 m_prevAdjustedPhase[c] = (float *)fftf_malloc(sizeof(float) * (m_wlen / 2 + 1));
Chris@16 86
Chris@100 87 m_time[c] = (float *)fftf_malloc(sizeof(float) * m_wlen);
Chris@100 88 m_freq[c] = (fftf_complex *)fftf_malloc(sizeof(fftf_complex) *
Chris@20 89 (m_wlen / 2 + 1));
Chris@20 90
Chris@100 91 m_plan[c] = fftf_plan_dft_r2c_1d(m_wlen, m_time[c], m_freq[c], FFTW_ESTIMATE);
Chris@100 92 m_iplan[c] = fftf_plan_dft_c2r_1d(m_wlen, m_freq[c], m_time[c], FFTW_ESTIMATE);
Chris@16 93
Chris@16 94 m_outbuf[c] = new RingBuffer<float>
Chris@31 95 ((m_maxOutputBlockSize + m_wlen) * 2);
Chris@31 96 m_inbuf[c] = new RingBuffer<float>
Chris@31 97 (lrintf(m_outbuf[c]->getSize() / m_ratio) + m_wlen);
Chris@31 98
Chris@31 99 std::cerr << "making inbuf size " << m_inbuf[c]->getSize() << " (outbuf size is " << m_outbuf[c]->getSize() << ", ratio " << m_ratio << ")" << std::endl;
Chris@31 100
Chris@31 101
Chris@100 102 m_mashbuf[c] = (float *)fftf_malloc(sizeof(float) * m_wlen);
Chris@16 103
Chris@31 104 for (size_t i = 0; i < m_wlen; ++i) {
Chris@16 105 m_mashbuf[c][i] = 0.0;
Chris@20 106 }
Chris@20 107
Chris@31 108 for (size_t i = 0; i <= m_wlen/2; ++i) {
Chris@16 109 m_prevPhase[c][i] = 0.0;
Chris@16 110 m_prevAdjustedPhase[c][i] = 0.0;
Chris@16 111 }
Chris@16 112 }
Chris@16 113
Chris@31 114 for (size_t i = 0; i < m_wlen; ++i) {
Chris@16 115 m_modulationbuf[i] = 0.0;
Chris@0 116 }
Chris@16 117
Chris@31 118 for (size_t i = 0; i <= m_wlen/2; ++i) {
Chris@20 119 m_prevTransientMag[i] = 0.0;
Chris@20 120 }
Chris@0 121 }
Chris@0 122
Chris@25 123 void
Chris@25 124 PhaseVocoderTimeStretcher::calculateParameters()
Chris@0 125 {
Chris@25 126 std::cerr << "PhaseVocoderTimeStretcher::calculateParameters" << std::endl;
Chris@25 127
Chris@25 128 m_wlen = 1024;
Chris@25 129
Chris@25 130 //!!! In transient sharpening mode, we need to pick the window
Chris@25 131 //length so as to be more or less fixed in audio duration (i.e. we
Chris@25 132 //need to exploit the sample rate)
Chris@25 133
Chris@25 134 //!!! have to work out the relationship between wlen and transient
Chris@25 135 //threshold
Chris@25 136
Chris@25 137 if (m_ratio < 1) {
Chris@25 138 if (m_ratio < 0.4) {
Chris@25 139 m_n1 = 1024;
Chris@25 140 m_wlen = 2048;
Chris@25 141 } else if (m_ratio < 0.8) {
Chris@25 142 m_n1 = 512;
Chris@25 143 } else {
Chris@25 144 m_n1 = 256;
Chris@25 145 }
Chris@32 146 if (shouldSharpen()) {
Chris@25 147 m_wlen = 2048;
Chris@25 148 }
Chris@31 149 m_n2 = lrintf(m_n1 * m_ratio);
Chris@25 150 } else {
Chris@25 151 if (m_ratio > 2) {
Chris@25 152 m_n2 = 512;
Chris@25 153 m_wlen = 4096;
Chris@25 154 } else if (m_ratio > 1.6) {
Chris@25 155 m_n2 = 384;
Chris@25 156 m_wlen = 2048;
Chris@25 157 } else {
Chris@25 158 m_n2 = 256;
Chris@25 159 }
Chris@32 160 if (shouldSharpen()) {
Chris@25 161 if (m_wlen < 2048) m_wlen = 2048;
Chris@25 162 }
Chris@31 163 m_n1 = lrintf(m_n2 / m_ratio);
Chris@69 164 if (m_n1 == 0) {
Chris@69 165 m_n1 = 1;
Chris@137 166 m_n2 = lrintf(m_ratio);
Chris@69 167 }
Chris@25 168 }
Chris@25 169
Chris@31 170 m_transientThreshold = lrintf(m_wlen / 4.5);
Chris@26 171
Chris@26 172 m_totalCount = 0;
Chris@26 173 m_transientCount = 0;
Chris@26 174 m_n2sum = 0;
Chris@26 175
Chris@26 176
Chris@26 177 std::cerr << "PhaseVocoderTimeStretcher: channels = " << m_channels
Chris@26 178 << ", ratio = " << m_ratio
Chris@26 179 << ", n1 = " << m_n1 << ", n2 = " << m_n2 << ", wlen = "
Chris@31 180 << m_wlen << ", max = " << m_maxOutputBlockSize << std::endl;
Chris@26 181 // << ", outbuflen = " << m_outbuf[0]->getSize() << std::endl;
Chris@25 182 }
Chris@25 183
Chris@25 184 void
Chris@25 185 PhaseVocoderTimeStretcher::cleanup()
Chris@25 186 {
Chris@25 187 std::cerr << "PhaseVocoderTimeStretcher::cleanup" << std::endl;
Chris@0 188
Chris@20 189 for (size_t c = 0; c < m_channels; ++c) {
Chris@0 190
Chris@100 191 fftf_destroy_plan(m_plan[c]);
Chris@100 192 fftf_destroy_plan(m_iplan[c]);
Chris@16 193
Chris@100 194 fftf_free(m_time[c]);
Chris@100 195 fftf_free(m_freq[c]);
Chris@16 196
Chris@100 197 fftf_free(m_mashbuf[c]);
Chris@100 198 fftf_free(m_prevPhase[c]);
Chris@100 199 fftf_free(m_prevAdjustedPhase[c]);
Chris@16 200
Chris@16 201 delete m_inbuf[c];
Chris@16 202 delete m_outbuf[c];
Chris@16 203 }
Chris@16 204
Chris@100 205 fftf_free(m_tempbuf);
Chris@100 206 fftf_free(m_modulationbuf);
Chris@100 207 fftf_free(m_prevTransientMag);
Chris@0 208
Chris@16 209 delete[] m_prevPhase;
Chris@16 210 delete[] m_prevAdjustedPhase;
Chris@16 211 delete[] m_inbuf;
Chris@16 212 delete[] m_outbuf;
Chris@16 213 delete[] m_mashbuf;
Chris@20 214 delete[] m_time;
Chris@20 215 delete[] m_freq;
Chris@20 216 delete[] m_plan;
Chris@20 217 delete[] m_iplan;
Chris@15 218
Chris@20 219 delete m_analysisWindow;
Chris@20 220 delete m_synthesisWindow;
Chris@0 221 }
Chris@0 222
Chris@25 223 void
Chris@25 224 PhaseVocoderTimeStretcher::setRatio(float ratio)
Chris@25 225 {
Chris@25 226 QMutexLocker locker(m_mutex);
Chris@25 227
Chris@25 228 size_t formerWlen = m_wlen;
Chris@25 229 m_ratio = ratio;
Chris@25 230
Chris@69 231 std::cerr << "PhaseVocoderTimeStretcher::setRatio: new ratio " << ratio
Chris@69 232 << std::endl;
Chris@69 233
Chris@25 234 calculateParameters();
Chris@25 235
Chris@25 236 if (m_wlen == formerWlen) {
Chris@25 237
Chris@25 238 // This is the only container whose size depends on m_ratio
Chris@25 239
Chris@31 240 RingBuffer<float> **newin = new RingBuffer<float> *[m_channels];
Chris@25 241
Chris@31 242 size_t formerSize = m_inbuf[0]->getSize();
Chris@31 243 size_t newSize = lrintf(m_outbuf[0]->getSize() / m_ratio) + m_wlen;
Chris@25 244
Chris@31 245 std::cerr << "resizing inbuf from " << formerSize << " to "
Chris@31 246 << newSize << " (outbuf size is " << m_outbuf[0]->getSize() << ", ratio " << m_ratio << ")" << std::endl;
Chris@25 247
Chris@31 248 if (formerSize != newSize) {
Chris@25 249
Chris@31 250 size_t ready = m_inbuf[0]->getReadSpace();
Chris@25 251
Chris@25 252 for (size_t c = 0; c < m_channels; ++c) {
Chris@31 253 newin[c] = new RingBuffer<float>(newSize);
Chris@25 254 }
Chris@25 255
Chris@31 256 if (ready > 0) {
Chris@31 257
Chris@31 258 size_t copy = std::min(ready, newSize);
Chris@31 259 float *tmp = new float[ready];
Chris@31 260
Chris@31 261 for (size_t c = 0; c < m_channels; ++c) {
Chris@31 262 m_inbuf[c]->read(tmp, ready);
Chris@31 263 newin[c]->write(tmp + ready - copy, copy);
Chris@31 264 }
Chris@31 265
Chris@31 266 delete[] tmp;
Chris@31 267 }
Chris@31 268
Chris@31 269 for (size_t c = 0; c < m_channels; ++c) {
Chris@31 270 delete m_inbuf[c];
Chris@31 271 }
Chris@31 272
Chris@31 273 delete[] m_inbuf;
Chris@31 274 m_inbuf = newin;
Chris@25 275 }
Chris@25 276
Chris@25 277 } else {
Chris@25 278
Chris@25 279 std::cerr << "wlen changed" << std::endl;
Chris@25 280 cleanup();
Chris@25 281 initialise();
Chris@25 282 }
Chris@25 283 }
Chris@25 284
Chris@0 285 size_t
Chris@14 286 PhaseVocoderTimeStretcher::getProcessingLatency() const
Chris@0 287 {
Chris@0 288 return getWindowSize() - getInputIncrement();
Chris@0 289 }
Chris@0 290
Chris@16 291 size_t
Chris@16 292 PhaseVocoderTimeStretcher::getRequiredInputSamples() const
Chris@16 293 {
Chris@25 294 QMutexLocker locker(m_mutex);
Chris@25 295
Chris@16 296 if (m_inbuf[0]->getReadSpace() >= m_wlen) return 0;
Chris@16 297 return m_wlen - m_inbuf[0]->getReadSpace();
Chris@16 298 }
Chris@16 299
Chris@16 300 void
Chris@16 301 PhaseVocoderTimeStretcher::putInput(float **input, size_t samples)
Chris@0 302 {
Chris@25 303 QMutexLocker locker(m_mutex);
Chris@25 304
Chris@0 305 // We need to add samples from input to our internal buffer. When
Chris@0 306 // we have m_windowSize samples in the buffer, we can process it,
Chris@0 307 // move the samples back by m_n1 and write the output onto our
Chris@0 308 // internal output buffer. If we have (samples * ratio) samples
Chris@0 309 // in that, we can write m_n2 of them back to output and return
Chris@0 310 // (otherwise we have to write zeroes).
Chris@0 311
Chris@0 312 // When we process, we write m_wlen to our fixed output buffer
Chris@0 313 // (m_mashbuf). We then pull out the first m_n2 samples from that
Chris@0 314 // buffer, push them into the output ring buffer, and shift
Chris@0 315 // m_mashbuf left by that amount.
Chris@0 316
Chris@0 317 // The processing latency is then m_wlen - m_n2.
Chris@0 318
Chris@0 319 size_t consumed = 0;
Chris@0 320
Chris@0 321 while (consumed < samples) {
Chris@0 322
Chris@16 323 size_t writable = m_inbuf[0]->getWriteSpace();
Chris@0 324 writable = std::min(writable, samples - consumed);
Chris@0 325
Chris@0 326 if (writable == 0) {
Chris@32 327 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@31 328 std::cerr << "WARNING: PhaseVocoderTimeStretcher::putInput: writable == 0 (inbuf has " << m_inbuf[0]->getReadSpace() << " samples available for reading, space for " << m_inbuf[0]->getWriteSpace() << " more)" << std::endl;
Chris@32 329 #endif
Chris@31 330 if (m_inbuf[0]->getReadSpace() < m_wlen ||
Chris@31 331 m_outbuf[0]->getWriteSpace() < m_n2) {
Chris@32 332 std::cerr << "WARNING: PhaseVocoderTimeStretcher::putInput: Inbuf has " << m_inbuf[0]->getReadSpace() << ", outbuf has space for " << m_outbuf[0]->getWriteSpace() << " (n2 = " << m_n2 << ", wlen = " << m_wlen << "), won't be able to process" << std::endl;
Chris@31 333 break;
Chris@31 334 }
Chris@31 335 } else {
Chris@0 336
Chris@14 337 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@31 338 std::cerr << "writing " << writable << " from index " << consumed << " to inbuf, consumed will be " << consumed + writable << std::endl;
Chris@0 339 #endif
Chris@16 340
Chris@31 341 for (size_t c = 0; c < m_channels; ++c) {
Chris@31 342 m_inbuf[c]->write(input[c] + consumed, writable);
Chris@31 343 }
Chris@31 344 consumed += writable;
Chris@16 345 }
Chris@0 346
Chris@16 347 while (m_inbuf[0]->getReadSpace() >= m_wlen &&
Chris@16 348 m_outbuf[0]->getWriteSpace() >= m_n2) {
Chris@0 349
Chris@0 350 // We know we have at least m_wlen samples available
Chris@16 351 // in m_inbuf. We need to peek m_wlen of them for
Chris@0 352 // processing, and then read m_n1 to advance the read
Chris@0 353 // pointer.
Chris@16 354
Chris@20 355 for (size_t c = 0; c < m_channels; ++c) {
Chris@20 356
Chris@20 357 size_t got = m_inbuf[c]->peek(m_tempbuf, m_wlen);
Chris@20 358 assert(got == m_wlen);
Chris@20 359
Chris@20 360 analyseBlock(c, m_tempbuf);
Chris@20 361 }
Chris@20 362
Chris@20 363 bool transient = false;
Chris@32 364 if (shouldSharpen()) transient = isTransient();
Chris@20 365
Chris@16 366 size_t n2 = m_n2;
Chris@20 367
Chris@20 368 if (transient) {
Chris@20 369 n2 = m_n1;
Chris@20 370 }
Chris@0 371
Chris@21 372 ++m_totalCount;
Chris@21 373 if (transient) ++m_transientCount;
Chris@21 374 m_n2sum += n2;
Chris@21 375
Chris@21 376 // std::cerr << "ratio for last 10: " <<last10num << "/" << (10 * m_n1) << " = " << float(last10num) / float(10 * m_n1) << " (should be " << m_ratio << ")" << std::endl;
Chris@21 377
Chris@21 378 if (m_totalCount > 50 && m_transientCount < m_totalCount) {
Chris@21 379
Chris@21 380 int fixed = lrintf(m_transientCount * m_n1);
Chris@21 381
Chris@21 382 int idealTotal = lrintf(m_totalCount * m_n1 * m_ratio);
Chris@21 383 int idealSquashy = idealTotal - fixed;
Chris@21 384
Chris@21 385 int squashyCount = m_totalCount - m_transientCount;
Chris@21 386
Chris@21 387 n2 = lrintf(idealSquashy / squashyCount);
Chris@21 388
Chris@32 389 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@21 390 if (n2 != m_n2) {
Chris@21 391 std::cerr << m_n2 << " -> " << n2 << std::endl;
Chris@21 392 }
Chris@32 393 #endif
Chris@21 394 }
Chris@21 395
Chris@16 396 for (size_t c = 0; c < m_channels; ++c) {
Chris@16 397
Chris@20 398 synthesiseBlock(c, m_mashbuf[c],
Chris@20 399 c == 0 ? m_modulationbuf : 0,
Chris@20 400 m_prevTransient ? m_n1 : m_n2);
Chris@16 401
Chris@0 402
Chris@14 403 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@16 404 std::cerr << "writing first " << m_n2 << " from mashbuf, skipping " << m_n1 << " on inbuf " << std::endl;
Chris@0 405 #endif
Chris@16 406 m_inbuf[c]->skip(m_n1);
Chris@13 407
Chris@16 408 for (size_t i = 0; i < n2; ++i) {
Chris@16 409 if (m_modulationbuf[i] > 0.f) {
Chris@16 410 m_mashbuf[c][i] /= m_modulationbuf[i];
Chris@16 411 }
Chris@16 412 }
Chris@16 413
Chris@16 414 m_outbuf[c]->write(m_mashbuf[c], n2);
Chris@16 415
Chris@16 416 for (size_t i = 0; i < m_wlen - n2; ++i) {
Chris@16 417 m_mashbuf[c][i] = m_mashbuf[c][i + n2];
Chris@16 418 }
Chris@16 419
Chris@16 420 for (size_t i = m_wlen - n2; i < m_wlen; ++i) {
Chris@16 421 m_mashbuf[c][i] = 0.0f;
Chris@13 422 }
Chris@13 423 }
Chris@13 424
Chris@20 425 m_prevTransient = transient;
Chris@17 426
Chris@16 427 for (size_t i = 0; i < m_wlen - n2; ++i) {
Chris@16 428 m_modulationbuf[i] = m_modulationbuf[i + n2];
Chris@0 429 }
Chris@13 430
Chris@16 431 for (size_t i = m_wlen - n2; i < m_wlen; ++i) {
Chris@13 432 m_modulationbuf[i] = 0.0f;
Chris@0 433 }
Chris@21 434
Chris@21 435 if (!transient) m_n2 = n2;
Chris@0 436 }
Chris@0 437
Chris@0 438
Chris@14 439 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@16 440 std::cerr << "loop ended: inbuf read space " << m_inbuf[0]->getReadSpace() << ", outbuf write space " << m_outbuf[0]->getWriteSpace() << std::endl;
Chris@0 441 #endif
Chris@0 442 }
Chris@0 443
Chris@16 444 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@16 445 std::cerr << "PhaseVocoderTimeStretcher::putInput returning" << std::endl;
Chris@16 446 #endif
Chris@21 447
Chris@21 448 // std::cerr << "ratio: nominal: " << getRatio() << " actual: "
Chris@21 449 // << m_total2 << "/" << m_total1 << " = " << float(m_total2) / float(m_total1) << " ideal: " << m_ratio << std::endl;
Chris@16 450 }
Chris@12 451
Chris@16 452 size_t
Chris@16 453 PhaseVocoderTimeStretcher::getAvailableOutputSamples() const
Chris@16 454 {
Chris@25 455 QMutexLocker locker(m_mutex);
Chris@25 456
Chris@16 457 return m_outbuf[0]->getReadSpace();
Chris@16 458 }
Chris@16 459
Chris@16 460 void
Chris@16 461 PhaseVocoderTimeStretcher::getOutput(float **output, size_t samples)
Chris@16 462 {
Chris@25 463 QMutexLocker locker(m_mutex);
Chris@25 464
Chris@16 465 if (m_outbuf[0]->getReadSpace() < samples) {
Chris@16 466 std::cerr << "WARNING: PhaseVocoderTimeStretcher::getOutput: not enough data (yet?) (" << m_outbuf[0]->getReadSpace() << " < " << samples << ")" << std::endl;
Chris@16 467 size_t fill = samples - m_outbuf[0]->getReadSpace();
Chris@16 468 for (size_t c = 0; c < m_channels; ++c) {
Chris@16 469 for (size_t i = 0; i < fill; ++i) {
Chris@16 470 output[c][i] = 0.0;
Chris@16 471 }
Chris@16 472 m_outbuf[c]->read(output[c] + fill, m_outbuf[c]->getReadSpace());
Chris@16 473 }
Chris@0 474 } else {
Chris@14 475 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@16 476 std::cerr << "enough data - writing " << samples << " from outbuf" << std::endl;
Chris@0 477 #endif
Chris@16 478 for (size_t c = 0; c < m_channels; ++c) {
Chris@16 479 m_outbuf[c]->read(output[c], samples);
Chris@16 480 }
Chris@0 481 }
Chris@0 482
Chris@14 483 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@16 484 std::cerr << "PhaseVocoderTimeStretcher::getOutput returning" << std::endl;
Chris@0 485 #endif
Chris@0 486 }
Chris@0 487
Chris@20 488 void
Chris@20 489 PhaseVocoderTimeStretcher::analyseBlock(size_t c, float *buf)
Chris@0 490 {
Chris@0 491 size_t i;
Chris@0 492
Chris@20 493 // buf contains m_wlen samples
Chris@0 494
Chris@14 495 #ifdef DEBUG_PHASE_VOCODER_TIME_STRETCHER
Chris@20 496 std::cerr << "PhaseVocoderTimeStretcher::analyseBlock (channel " << c << ")" << std::endl;
Chris@0 497 #endif
Chris@0 498
Chris@20 499 m_analysisWindow->cut(buf);
Chris@0 500
Chris@0 501 for (i = 0; i < m_wlen/2; ++i) {
Chris@0 502 float temp = buf[i];
Chris@0 503 buf[i] = buf[i + m_wlen/2];
Chris@0 504 buf[i + m_wlen/2] = temp;
Chris@0 505 }
Chris@19 506
Chris@0 507 for (i = 0; i < m_wlen; ++i) {
Chris@20 508 m_time[c][i] = buf[i];
Chris@0 509 }
Chris@0 510
Chris@100 511 fftf_execute(m_plan[c]); // m_time -> m_freq
Chris@20 512 }
Chris@0 513
Chris@20 514 bool
Chris@20 515 PhaseVocoderTimeStretcher::isTransient()
Chris@20 516 {
Chris@20 517 int count = 0;
Chris@16 518
Chris@31 519 for (size_t i = 0; i <= m_wlen/2; ++i) {
Chris@16 520
Chris@20 521 float real = 0.f, imag = 0.f;
Chris@20 522
Chris@20 523 for (size_t c = 0; c < m_channels; ++c) {
Chris@20 524 real += m_freq[c][i][0];
Chris@20 525 imag += m_freq[c][i][1];
Chris@16 526 }
Chris@16 527
Chris@20 528 float sqrmag = (real * real + imag * imag);
Chris@20 529
Chris@20 530 if (m_prevTransientMag[i] > 0.f) {
Chris@20 531 float diff = 10.f * log10f(sqrmag / m_prevTransientMag[i]);
Chris@20 532 if (diff > 3.f) ++count;
Chris@20 533 }
Chris@20 534
Chris@20 535 m_prevTransientMag[i] = sqrmag;
Chris@16 536 }
Chris@16 537
Chris@20 538 bool isTransient = false;
Chris@16 539
Chris@26 540 // if (count > m_transientThreshold &&
Chris@26 541 // count > m_prevTransientScore * 1.2) {
Chris@26 542 if (count > m_prevTransientScore &&
Chris@26 543 count > m_transientThreshold &&
Chris@137 544 count - m_prevTransientScore > int(m_wlen) / 20) {
Chris@20 545 isTransient = true;
Chris@26 546
Chris@26 547
Chris@26 548 std::cerr << "isTransient (count = " << count << ", prev = " << m_prevTransientScore << ", diff = " << count - m_prevTransientScore << ", ratio = " << (m_totalCount > 0 ? (float (m_n2sum) / float(m_totalCount * m_n1)) : 1.f) << ", ideal = " << m_ratio << ")" << std::endl;
Chris@26 549 // } else {
Chris@26 550 // std::cerr << " !transient (count = " << count << ", prev = " << m_prevTransientScore << ", diff = " << count - m_prevTransientScore << ")" << std::endl;
Chris@20 551 }
Chris@16 552
Chris@21 553 m_prevTransientScore = count;
Chris@20 554
Chris@20 555 return isTransient;
Chris@20 556 }
Chris@20 557
Chris@20 558 void
Chris@20 559 PhaseVocoderTimeStretcher::synthesiseBlock(size_t c,
Chris@20 560 float *out,
Chris@20 561 float *modulation,
Chris@20 562 size_t lastStep)
Chris@20 563 {
Chris@20 564 bool unchanged = (lastStep == m_n1);
Chris@20 565
Chris@31 566 for (size_t i = 0; i <= m_wlen/2; ++i) {
Chris@0 567
Chris@20 568 float phase = princargf(atan2f(m_freq[c][i][1], m_freq[c][i][0]));
Chris@19 569 float adjustedPhase = phase;
Chris@12 570
Chris@20 571 if (!unchanged) {
Chris@16 572
Chris@20 573 float omega = (2 * M_PI * m_n1 * i) / m_wlen;
Chris@20 574
Chris@20 575 float expectedPhase = m_prevPhase[c][i] + omega;
Chris@20 576
Chris@20 577 float phaseError = princargf(phase - expectedPhase);
Chris@20 578
Chris@20 579 float phaseIncrement = (omega + phaseError) / m_n1;
Chris@20 580
Chris@20 581 adjustedPhase = m_prevAdjustedPhase[c][i] +
Chris@20 582 lastStep * phaseIncrement;
Chris@20 583
Chris@78 584 float mag = sqrtf(m_freq[c][i][0] * m_freq[c][i][0] +
Chris@78 585 m_freq[c][i][1] * m_freq[c][i][1]);
Chris@78 586
Chris@20 587 float real = mag * cosf(adjustedPhase);
Chris@20 588 float imag = mag * sinf(adjustedPhase);
Chris@20 589 m_freq[c][i][0] = real;
Chris@20 590 m_freq[c][i][1] = imag;
Chris@19 591 }
Chris@19 592
Chris@16 593 m_prevPhase[c][i] = phase;
Chris@16 594 m_prevAdjustedPhase[c][i] = adjustedPhase;
Chris@0 595 }
Chris@20 596
Chris@100 597 fftf_execute(m_iplan[c]); // m_freq -> m_time, inverse fft
Chris@19 598
Chris@31 599 for (size_t i = 0; i < m_wlen/2; ++i) {
Chris@20 600 float temp = m_time[c][i];
Chris@20 601 m_time[c][i] = m_time[c][i + m_wlen/2];
Chris@20 602 m_time[c][i + m_wlen/2] = temp;
Chris@20 603 }
Chris@20 604
Chris@31 605 for (size_t i = 0; i < m_wlen; ++i) {
Chris@20 606 m_time[c][i] = m_time[c][i] / m_wlen;
Chris@0 607 }
Chris@15 608
Chris@20 609 m_synthesisWindow->cut(m_time[c]);
Chris@19 610
Chris@31 611 for (size_t i = 0; i < m_wlen; ++i) {
Chris@20 612 out[i] += m_time[c][i];
Chris@0 613 }
Chris@16 614
Chris@16 615 if (modulation) {
Chris@16 616
Chris@20 617 float area = m_analysisWindow->getArea();
Chris@16 618
Chris@31 619 for (size_t i = 0; i < m_wlen; ++i) {
Chris@20 620 float val = m_synthesisWindow->getValue(i);
Chris@16 621 modulation[i] += val * area;
Chris@16 622 }
Chris@16 623 }
Chris@0 624 }
Chris@15 625
Chris@20 626