Mercurial > hg > smallbox
changeset 156:a4d0977d4595 danieleb
First branch commit, danieleb
author | danieleb |
---|---|
date | Tue, 30 Aug 2011 11:12:31 +0100 |
parents | af307f247ac7 |
children | 00a8473e4b85 |
files | .hgignore DL/two-step DL/SMALL_two_step_DL.m DL/two-step DL/dico_decorr.m data/audio/wav/oboe.mf.c4b4.wav examples/SMALL_test_coherence.m util/SMALL_solve.m |
diffstat | 6 files changed, 299 insertions(+), 53 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/.hgignore Tue Aug 30 11:12:31 2011 +0100 @@ -0,0 +1,20 @@ +toolboxes/CVX +toolboxes/GPSR +toolboxes/KSVD +toolboxes/KSVDS +toolboxes/SPARCO +toolboxes/SparseLab +toolboxes/Sparsify +toolboxes/SPGL1 +solvers/SMALL_ompGabor/omp2mexGabor\.mexmaci64 +solvers/SMALL_ompGabor/ompmexGabor\.mexmaci64 +util/ksvd utils/addtocols\.mexmaci64 +util/ksvd utils/col2imstep\.mexmaci64 +util/ksvd utils/collincomb\.mexmaci64 +util/ksvd utils/im2colstep\.mexmaci64 +util/ksvd utils/rowlincomb\.mexmaci64 +util/ksvd utils/sprow\.mexmaci64 +util/Rice Wavelet Toolbox/mdwt\.mexmaci64 +util/Rice Wavelet Toolbox/midwt\.mexmaci64 +util/Rice Wavelet Toolbox/mirdwt\.mexmaci64 +util/Rice Wavelet Toolbox/mrdwt\.mexmaci64
--- a/DL/two-step DL/SMALL_two_step_DL.m Fri Jul 29 12:35:52 2011 +0100 +++ b/DL/two-step DL/SMALL_two_step_DL.m Tue Aug 30 11:12:31 2011 +0100 @@ -76,7 +76,7 @@ end % determine if we should do decorrelation in every iteration % -if isfield(DL.param,'coherence') +if isfield(DL.param,'coherence') && isscalar(DL.param.coherence) decorrelate = 1; mu = DL.param.coherence; else @@ -108,13 +108,20 @@ % main loop % for i = 1:iternum + disp([num2str(i) '/' num2str(iternum)]); Problem.A = dico; solver = SMALL_solve(Problem, solver); [dico, solver.solution] = dico_update(dico, sig, solver.solution, ... typeUpdate, flow, learningRate); - if (decorrelate) - dico = dico_decorr(dico, mu, solver.solution); - end + dico = normcols(dico); + switch DL.param.decFcn + case 'mailhe' + dico = dico_decorr(dico, mu, solver.solution); + case 'tropp' + [n m] = size(dico); + dico = grassmanian(n,m,[],[],[],dico,true); + otherwise + end if ((show_dictionary)&&(mod(i,show_iter)==0)) dictimg = SMALL_showdict(dico,[8 8],... @@ -139,4 +146,4 @@ Y(blockids) = sum(X(:,blockids).^2); end -end \ No newline at end of file +end
--- a/DL/two-step DL/dico_decorr.m Fri Jul 29 12:35:52 2011 +0100 +++ b/DL/two-step DL/dico_decorr.m Tue Aug 30 11:12:31 2011 +0100 @@ -9,6 +9,8 @@ % Result: % dico: a dictionary close to the input one with coherence mu. + eps = 1e-6; % define tolerance for normalisation term alpha + % compute atom weights if nargin > 2 rank = sum(amp.*amp, 2); @@ -20,7 +22,7 @@ % coherence mu. niter can be adjusted to needs. niter = 1; while niter < 5 && ... - max(max(abs(dico'*dico -eye(length(dico))))) > mu + 10^-6 + max(max(abs(dico'*dico -eye(length(dico))))) > mu + eps % find pairs of high correlation atoms colors = dico_color(dico, mu); @@ -36,7 +38,7 @@ % update the atom corr = dico(:,index(1))'*dico(:,index(2)); - alpha = sqrt((1-mu*mu)/(1-corr*corr)); + alpha = sqrt((1-mu*mu)/(1-corr^2+eps)); beta = corr*alpha-mu*sign(corr); dico(:,index(2)) = alpha*dico(:,index(2))... -beta*dico(:,index(1));
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/examples/SMALL_test_coherence.m Tue Aug 30 11:12:31 2011 +0100 @@ -0,0 +1,210 @@ +clear + +%% Parameteres + +% Dictionary learning parameters +toolbox = 'TwoStepDL'; %dictionary learning toolbox +dicUpdate = {'ksvd','mailhe'}; %dictionary updates +iterNum = 20; %number of iterations + +% Test signal parameters +signal = audio('music03_16kHz.wav'); %audio signal +blockSize = 256; %size of audio frames +dictSize = 512; %number of atoms in the dictionary +overlap = 0.5; %overlap between consecutive frames +sigma = 1e6; %snr of noise (set to be negligible so that the problem becomes approximation rather than denoising) +percActiveAtoms = 5; %percentage of active atoms + +% Dependent parameters +nActiveAtoms = fix(blockSize/100*percActiveAtoms); %number of active atoms +epsilon = 1/sigma; %error constraint for sparse representation step (corresponds to noise applied to signals) +minCoherence = sqrt((dictSize-blockSize)/(blockSize*(dictSize-1))); %target coherence (based on coherence lower bound) + +% Initial dictionaries +dctDict = dictionary('dct',blockSize,dictSize); +dctDict = dctDict.phi; +gaborParam = struct('N',blockSize,'redundancyFactor',2,'wd',@rectwin); +gaborDict = Gabor_Dictionary(gaborParam); + +%% Generate audio denoising problem with low noise (audio representation) +SMALL.Problem = generateAudioDenoiseProblem(signal.s,[],blockSize,... + dictSize,overlap,sigma); % generate representation problem +SMALL.Problem.b1 = SMALL.Problem.b; % copy signals from training set b to test set b1 (needed for later functions) + +% omp2 sparse representation solver +ompParam = struct('X',SMALL.Problem.b,'epsilon',epsilon,'maxatoms',nActiveAtoms); %parameters +solver = SMALL_init_solver('ompbox','omp2',ompParam,false); %solver structure + + +%% Test ksvd dictionary update +name = dicUpdate{1}; %use ksvd update +SMALL.DL(1:9) = SMALL_init_DL(toolbox,name); %create dictionary learning structures + +% learn with random initialisation and no decorrelation +SMALL.DL(1).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','none'); %parameters for the dictionary learning +SMALL.DL(1) = SMALL_learn(SMALL.Problem,SMALL.DL(1)); %learn dictionary + +% learn with random initialisation and mailhe decorrelation +SMALL.DL(2).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','mailhe','coherence',minCoherence); %parameters for the dictionary learning +SMALL.DL(2) = SMALL_learn(SMALL.Problem,SMALL.DL(2)); %learn dictionary + +% learn with random initialisation and tropp decorrelation +SMALL.DL(3).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','tropp','coherence',minCoherence); %parameters for the dictionary learning +SMALL.DL(3) = SMALL_learn(SMALL.Problem,SMALL.DL(3)); %learn dictionary + +% Learn with dct initialisation and no decorrelation +SMALL.DL(4).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','none','initdict',dctDict); %parameters for the dictionary learning +SMALL.DL(4) = SMALL_learn(SMALL.Problem,SMALL.DL(4)); %learn dictionary + +% learn with dct initialisation and mailhe decorrelation +SMALL.DL(5).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','mailhe','coherence',minCoherence,'initdict',dctDict); %parameters for the dictionary learning +SMALL.DL(5) = SMALL_learn(SMALL.Problem,SMALL.DL(5)); %learn dictionary + +% learn with dct initialisation and tropp decorrelation +SMALL.DL(6).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','tropp','coherence',minCoherence,'initdict',dctDict); %parameters for the dictionary learning +SMALL.DL(6) = SMALL_learn(SMALL.Problem,SMALL.DL(6)); %learn dictionary + +% Learn with gabor initialisation and no decorrelation +SMALL.DL(7).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','none','initdict',gaborDict); %parameters for the dictionary learning +SMALL.DL(7) = SMALL_learn(SMALL.Problem,SMALL.DL(7)); %learn dictionary + +% learn with gabor initialisation and mailhe decorrelation +SMALL.DL(8).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','mailhe','coherence',minCoherence,'initdict',gaborDict); %parameters for the dictionary learning +SMALL.DL(8) = SMALL_learn(SMALL.Problem,SMALL.DL(8)); %learn dictionary + +% learn with gabor initialisation and tropp decorrelation +SMALL.DL(9).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','tropp','coherence',minCoherence,'initdict',gaborDict); %parameters for the dictionary learning +SMALL.DL(9) = SMALL_learn(SMALL.Problem,SMALL.DL(9)); %learn dictionary + +%% Test mailhe dictionary update +name = dicUpdate{2}; %use mailhe update +SMALL.DL(10:18) = SMALL_init_DL(toolbox,name); %create dictionary learning structure + +% learn with random initialisation and no decorrelation +SMALL.DL(10).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','none'); %parameters for the dictionary learning +SMALL.DL(10) = SMALL_learn(SMALL.Problem,SMALL.DL(10)); %learn dictionary + +% learn with random initialisation and mailhe decorrelation +SMALL.DL(11).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','mailhe','coherence',minCoherence); %parameters for the dictionary learning +SMALL.DL(11) = SMALL_learn(SMALL.Problem,SMALL.DL(11)); %learn dictionary + +% learn with random initialisation and tropp decorrelation +SMALL.DL(12).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','tropp','coherence',minCoherence); %parameters for the dictionary learning +SMALL.DL(12) = SMALL_learn(SMALL.Problem,SMALL.DL(12)); %learn dictionary + +% Learn with dct initialisation and no decorrelation +SMALL.DL(13).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','none','initdict',dctDict); %parameters for the dictionary learning +SMALL.DL(13) = SMALL_learn(SMALL.Problem,SMALL.DL(13)); %learn dictionary + +% learn with dct initialisation and mailhe decorrelation +SMALL.DL(14).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','mailhe','coherence',minCoherence,'initdict',dctDict); %parameters for the dictionary learning +SMALL.DL(14) = SMALL_learn(SMALL.Problem,SMALL.DL(14)); %learn dictionary + +% learn with dct initialisation and tropp decorrelation +SMALL.DL(15).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','tropp','coherence',minCoherence,'initdict',dctDict); %parameters for the dictionary learning +SMALL.DL(15) = SMALL_learn(SMALL.Problem,SMALL.DL(15)); %learn dictionary + +% Learn with gabor initialisation and no decorrelation +SMALL.DL(16).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','none','initdict',gaborDict); %parameters for the dictionary learning +SMALL.DL(16) = SMALL_learn(SMALL.Problem,SMALL.DL(16)); %learn dictionary + +% learn with gabor initialisation and mailhe decorrelation +SMALL.DL(17).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','mailhe','coherence',minCoherence,'initdict',gaborDict); %parameters for the dictionary learning +SMALL.DL(17) = SMALL_learn(SMALL.Problem,SMALL.DL(17)); %learn dictionary + +% learn with gabor initialisation and tropp decorrelation +SMALL.DL(18).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... + 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... + 'decFcn','tropp','coherence',minCoherence,'initdict',gaborDict); %parameters for the dictionary learning +SMALL.DL(18) = SMALL_learn(SMALL.Problem,SMALL.DL(18)); %learn dictionary + +%% Evaluate coherence and snr of representation for the various methods +sigNoiseRatio = zeros(18,1); +mu = zeros(18,1); +for i=1:18 + SMALL.Problem.A = SMALL.DL(i).D; + tempSolver = SMALL_solve(SMALL.Problem,solver); + sigNoiseRatio(i) = snr(SMALL.Problem.b,SMALL.DL(i).D*tempSolver.solution); + dic(i) = dictionary(SMALL.DL(i).D); + mu(i) = dic(i).coherence; +end + +%% Plot results +minMu = sqrt((dictSize-blockSize)/(blockSize*(dictSize-1))); +maxSNR = max(sigNoiseRatio); + +figure, subplot(2,2,1) +snrMat = buffer(sigNoiseRatio(1:9),3); +bar(snrMat'); +title('SNR - KSVD Update') +xlabel('Initial dictionary') +ylabel('SNR (dB)') +set(gca,'XTickLabel',{'data','dct','gabor'},'YLim',[0 maxSNR+1]); +legend('none','Mailhe','Tropp') +grid on + +subplot(2,2,2), grid on +snrMat = buffer(sigNoiseRatio(10:18),3); +bar(snrMat'); +title('SNR - Mailhe Update') +xlabel('Initial dictionary') +ylabel('SNR (dB)') +set(gca,'XTickLabel',{'data','dct','gabor'},'YLim',[0 maxSNR+1]); +legend('none','Mailhe','Tropp') +grid on + +subplot(2,2,3), hold on, grid on +title('Coherence - KSVD Update') +muMat = buffer(mu(1:9),3); +line([0.5 3.5],[1 1],'Color','r'); +bar(muMat'); +line([0.5 3.5],[minMu minMu],'Color','k'); +set(gca,'XTick',1:3,'XTickLabel',{'data','dct','gabor'},'YLim',[0 1.05]) +legend('\mu_{max}','none','Mailhe','Tropp','\mu_{min}') +ylabel('\mu') +xlabel('Initial dictionary') + +subplot(2,2,4), hold on, grid on +title('Coherence - Mailhe Update') +muMat = buffer(mu(10:18),3); +line([0.5 3.5],[1 1],'Color','r'); +bar(muMat'); +line([0.5 3.5],[minMu minMu],'Color','k'); +set(gca,'XTick',1:3,'XTickLabel',{'data','dct','gabor'},'YLim',[0 1.05]) +legend('\mu_{max}','none','Mailhe','Tropp','\mu_{min}') +ylabel('\mu') +xlabel('Initial dictionary')
--- a/util/SMALL_solve.m Fri Jul 29 12:35:52 2011 +0100 +++ b/util/SMALL_solve.m Tue Aug 30 11:12:31 2011 +0100 @@ -15,7 +15,7 @@ % published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. See the file % COPYING included with this distribution for more information. -% +% %% if isa(Problem.A,'float') @@ -45,51 +45,58 @@ start=cputime; tStart=tic; -if strcmpi(solver.toolbox,'sparselab') - y = eval([solver.name,'(SparseLab_A, b, n,',solver.param,');']); -elseif strcmpi(solver.toolbox,'sparsify') - y = eval([solver.name,'(b, A, n, ''P_trans'', AT,',solver.param,');']); -elseif (strcmpi(solver.toolbox,'spgl1')||strcmpi(solver.toolbox,'gpsr')) - y = eval([solver.name,'(b, A,',solver.param,');']); -elseif (strcmpi(solver.toolbox,'SPAMS')) - y = eval([solver.name,'(b, A, solver.param);']); -elseif (strcmpi(solver.toolbox,'SMALL')) - if isa(Problem.A,'float') - y = eval([solver.name,'(A, b, n,',solver.param,');']); - else - y = eval([solver.name,'(A, b, n,',solver.param,',AT);']); - end -elseif (strcmpi(solver.toolbox, 'ompbox')) - G=A'*A; - epsilon=solver.param.epsilon; - maxatoms=solver.param.maxatoms; - y = eval([solver.name,'(A, b, G,epsilon,''maxatoms'',maxatoms,''checkdict'',''off'');']); -elseif (strcmpi(solver.toolbox, 'ompsbox')) - basedict = Problem.basedict; - if issparse(Problem.A) - A = Problem.A; - else - A = sparse(Problem.A); - end - G = dicttsep(basedict,A,dictsep(basedict,A,speye(size(A,2)))); - epsilon=solver.param.epsilon; - maxatoms=solver.param.maxatoms; - y = eval([solver.name,'(basedict, A, b, G,epsilon,''maxatoms'',maxatoms,''checkdict'',''off'');']); - Problem.sparse=1; -% To introduce new sparse representation algorithm put the files in -% your Matlab path. Next, unique name <TolboxID> for your toolbox and -% prefferd API <Preffered_API> needs to be defined. -% -% elseif strcmpi(solver.toolbox,'<ToolboxID>') -% -% % - Evaluate the function (solver.name - defined in the main) with -% % parameters given above -% -% y = eval([solver.name,'(<Preffered_API>);']); - -else - printf('\nToolbox has not been registered. Please change SMALL_solver file.\n'); - return +switch solver.toolbox + case 'sparselab' + y = eval([solver.name,'(SparseLab_A, b, n,',solver.param,');']); + case 'sparsify' + y = eval([solver.name,'(b, A, n, ''P_trans'', AT,',solver.param,');']); + case 'spgl1' + y = eval([solver.name,'(b, A,',solver.param,');']); + case 'gpsr' + y = eval([solver.name,'(b, A,',solver.param,');']); + case 'SPAMS' + y = eval([solver.name,'(b, A, solver.param);']); + case 'SMALL' + if isa(Problem.A,'float') + y = eval([solver.name,'(A, b, n,',solver.param,');']); + else + y = eval([solver.name,'(A, b, n,',solver.param,',AT);']); + end + case 'ompbox' + G = A'*A; + maxatoms=solver.param.maxatoms; + switch solver.name + case 'omp' + y = omp(A,b,G,maxatoms,'checkdict','off'); + case 'omp2' + epsilon=solver.param.epsilon; + y = omp2(A,b,G,epsilon,'maxatoms',maxatoms,'checkdict','off'); + end + case 'ompsbox' + basedict = Problem.basedict; + if issparse(Problem.A) + A = Problem.A; + else + A = sparse(Problem.A); + end + G = dicttsep(basedict,A,dictsep(basedict,A,speye(size(A,2)))); + epsilon=solver.param.epsilon; + maxatoms=solver.param.maxatoms; + y = eval([solver.name,'(basedict, A, b, G,epsilon,''maxatoms'',maxatoms,''checkdict'',''off'');']); + Problem.sparse=1; + % To introduce new sparse representation algorithm put the files in + % your Matlab path. Next, unique name <TolboxID> for your toolbox and + % prefferd API <Preffered_API> needs to be defined. + % + % elseif strcmpi(solver.toolbox,'<ToolboxID>') + % + % % - Evaluate the function (solver.name - defined in the main) with + % % parameters given above + % + % y = eval([solver.name,'(<Preffered_API>);']); + otherwise + printf('\nToolbox has not been registered. Please change SMALL_solver file.\n'); + return end %%