Mercurial > hg > smallbox
view examples/SMALL_test_coherence.m @ 156:a4d0977d4595 danieleb
First branch commit, danieleb
author | danieleb |
---|---|
date | Tue, 30 Aug 2011 11:12:31 +0100 |
parents | |
children | 8324c7ea6602 |
line wrap: on
line source
clear %% Parameteres % Dictionary learning parameters toolbox = 'TwoStepDL'; %dictionary learning toolbox dicUpdate = {'ksvd','mailhe'}; %dictionary updates iterNum = 20; %number of iterations % Test signal parameters signal = audio('music03_16kHz.wav'); %audio signal blockSize = 256; %size of audio frames dictSize = 512; %number of atoms in the dictionary overlap = 0.5; %overlap between consecutive frames sigma = 1e6; %snr of noise (set to be negligible so that the problem becomes approximation rather than denoising) percActiveAtoms = 5; %percentage of active atoms % Dependent parameters nActiveAtoms = fix(blockSize/100*percActiveAtoms); %number of active atoms epsilon = 1/sigma; %error constraint for sparse representation step (corresponds to noise applied to signals) minCoherence = sqrt((dictSize-blockSize)/(blockSize*(dictSize-1))); %target coherence (based on coherence lower bound) % Initial dictionaries dctDict = dictionary('dct',blockSize,dictSize); dctDict = dctDict.phi; gaborParam = struct('N',blockSize,'redundancyFactor',2,'wd',@rectwin); gaborDict = Gabor_Dictionary(gaborParam); %% Generate audio denoising problem with low noise (audio representation) SMALL.Problem = generateAudioDenoiseProblem(signal.s,[],blockSize,... dictSize,overlap,sigma); % generate representation problem SMALL.Problem.b1 = SMALL.Problem.b; % copy signals from training set b to test set b1 (needed for later functions) % omp2 sparse representation solver ompParam = struct('X',SMALL.Problem.b,'epsilon',epsilon,'maxatoms',nActiveAtoms); %parameters solver = SMALL_init_solver('ompbox','omp2',ompParam,false); %solver structure %% Test ksvd dictionary update name = dicUpdate{1}; %use ksvd update SMALL.DL(1:9) = SMALL_init_DL(toolbox,name); %create dictionary learning structures % learn with random initialisation and no decorrelation SMALL.DL(1).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... 'decFcn','none'); %parameters for the dictionary learning SMALL.DL(1) = SMALL_learn(SMALL.Problem,SMALL.DL(1)); %learn dictionary % learn with random initialisation and mailhe decorrelation SMALL.DL(2).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... 'decFcn','mailhe','coherence',minCoherence); %parameters for the dictionary learning SMALL.DL(2) = SMALL_learn(SMALL.Problem,SMALL.DL(2)); %learn dictionary % learn with random initialisation and tropp decorrelation SMALL.DL(3).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... 'decFcn','tropp','coherence',minCoherence); %parameters for the dictionary learning SMALL.DL(3) = SMALL_learn(SMALL.Problem,SMALL.DL(3)); %learn dictionary % Learn with dct initialisation and no decorrelation SMALL.DL(4).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... 'decFcn','none','initdict',dctDict); %parameters for the dictionary learning SMALL.DL(4) = SMALL_learn(SMALL.Problem,SMALL.DL(4)); %learn dictionary % learn with dct initialisation and mailhe decorrelation SMALL.DL(5).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... 'decFcn','mailhe','coherence',minCoherence,'initdict',dctDict); %parameters for the dictionary learning SMALL.DL(5) = SMALL_learn(SMALL.Problem,SMALL.DL(5)); %learn dictionary % learn with dct initialisation and tropp decorrelation SMALL.DL(6).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... 'decFcn','tropp','coherence',minCoherence,'initdict',dctDict); %parameters for the dictionary learning SMALL.DL(6) = SMALL_learn(SMALL.Problem,SMALL.DL(6)); %learn dictionary % Learn with gabor initialisation and no decorrelation SMALL.DL(7).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... 'decFcn','none','initdict',gaborDict); %parameters for the dictionary learning SMALL.DL(7) = SMALL_learn(SMALL.Problem,SMALL.DL(7)); %learn dictionary % learn with gabor initialisation and mailhe decorrelation SMALL.DL(8).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... 'decFcn','mailhe','coherence',minCoherence,'initdict',gaborDict); %parameters for the dictionary learning SMALL.DL(8) = SMALL_learn(SMALL.Problem,SMALL.DL(8)); %learn dictionary % learn with gabor initialisation and tropp decorrelation SMALL.DL(9).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... 'decFcn','tropp','coherence',minCoherence,'initdict',gaborDict); %parameters for the dictionary learning SMALL.DL(9) = SMALL_learn(SMALL.Problem,SMALL.DL(9)); %learn dictionary %% Test mailhe dictionary update name = dicUpdate{2}; %use mailhe update SMALL.DL(10:18) = SMALL_init_DL(toolbox,name); %create dictionary learning structure % learn with random initialisation and no decorrelation SMALL.DL(10).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... 'decFcn','none'); %parameters for the dictionary learning SMALL.DL(10) = SMALL_learn(SMALL.Problem,SMALL.DL(10)); %learn dictionary % learn with random initialisation and mailhe decorrelation SMALL.DL(11).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... 'decFcn','mailhe','coherence',minCoherence); %parameters for the dictionary learning SMALL.DL(11) = SMALL_learn(SMALL.Problem,SMALL.DL(11)); %learn dictionary % learn with random initialisation and tropp decorrelation SMALL.DL(12).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... 'decFcn','tropp','coherence',minCoherence); %parameters for the dictionary learning SMALL.DL(12) = SMALL_learn(SMALL.Problem,SMALL.DL(12)); %learn dictionary % Learn with dct initialisation and no decorrelation SMALL.DL(13).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... 'decFcn','none','initdict',dctDict); %parameters for the dictionary learning SMALL.DL(13) = SMALL_learn(SMALL.Problem,SMALL.DL(13)); %learn dictionary % learn with dct initialisation and mailhe decorrelation SMALL.DL(14).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... 'decFcn','mailhe','coherence',minCoherence,'initdict',dctDict); %parameters for the dictionary learning SMALL.DL(14) = SMALL_learn(SMALL.Problem,SMALL.DL(14)); %learn dictionary % learn with dct initialisation and tropp decorrelation SMALL.DL(15).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... 'decFcn','tropp','coherence',minCoherence,'initdict',dctDict); %parameters for the dictionary learning SMALL.DL(15) = SMALL_learn(SMALL.Problem,SMALL.DL(15)); %learn dictionary % Learn with gabor initialisation and no decorrelation SMALL.DL(16).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... 'decFcn','none','initdict',gaborDict); %parameters for the dictionary learning SMALL.DL(16) = SMALL_learn(SMALL.Problem,SMALL.DL(16)); %learn dictionary % learn with gabor initialisation and mailhe decorrelation SMALL.DL(17).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... 'decFcn','mailhe','coherence',minCoherence,'initdict',gaborDict); %parameters for the dictionary learning SMALL.DL(17) = SMALL_learn(SMALL.Problem,SMALL.DL(17)); %learn dictionary % learn with gabor initialisation and tropp decorrelation SMALL.DL(18).param = struct('data',SMALL.Problem.b,'Tdata',nActiveAtoms,... 'dictsize',dictSize,'iternum',iterNum,'memusage','high','solver',solver,... 'decFcn','tropp','coherence',minCoherence,'initdict',gaborDict); %parameters for the dictionary learning SMALL.DL(18) = SMALL_learn(SMALL.Problem,SMALL.DL(18)); %learn dictionary %% Evaluate coherence and snr of representation for the various methods sigNoiseRatio = zeros(18,1); mu = zeros(18,1); for i=1:18 SMALL.Problem.A = SMALL.DL(i).D; tempSolver = SMALL_solve(SMALL.Problem,solver); sigNoiseRatio(i) = snr(SMALL.Problem.b,SMALL.DL(i).D*tempSolver.solution); dic(i) = dictionary(SMALL.DL(i).D); mu(i) = dic(i).coherence; end %% Plot results minMu = sqrt((dictSize-blockSize)/(blockSize*(dictSize-1))); maxSNR = max(sigNoiseRatio); figure, subplot(2,2,1) snrMat = buffer(sigNoiseRatio(1:9),3); bar(snrMat'); title('SNR - KSVD Update') xlabel('Initial dictionary') ylabel('SNR (dB)') set(gca,'XTickLabel',{'data','dct','gabor'},'YLim',[0 maxSNR+1]); legend('none','Mailhe','Tropp') grid on subplot(2,2,2), grid on snrMat = buffer(sigNoiseRatio(10:18),3); bar(snrMat'); title('SNR - Mailhe Update') xlabel('Initial dictionary') ylabel('SNR (dB)') set(gca,'XTickLabel',{'data','dct','gabor'},'YLim',[0 maxSNR+1]); legend('none','Mailhe','Tropp') grid on subplot(2,2,3), hold on, grid on title('Coherence - KSVD Update') muMat = buffer(mu(1:9),3); line([0.5 3.5],[1 1],'Color','r'); bar(muMat'); line([0.5 3.5],[minMu minMu],'Color','k'); set(gca,'XTick',1:3,'XTickLabel',{'data','dct','gabor'},'YLim',[0 1.05]) legend('\mu_{max}','none','Mailhe','Tropp','\mu_{min}') ylabel('\mu') xlabel('Initial dictionary') subplot(2,2,4), hold on, grid on title('Coherence - Mailhe Update') muMat = buffer(mu(10:18),3); line([0.5 3.5],[1 1],'Color','r'); bar(muMat'); line([0.5 3.5],[minMu minMu],'Color','k'); set(gca,'XTick',1:3,'XTickLabel',{'data','dct','gabor'},'YLim',[0 1.05]) legend('\mu_{max}','none','Mailhe','Tropp','\mu_{min}') ylabel('\mu') xlabel('Initial dictionary')