Mercurial > hg > smallbox
view DL/Majorization Minimization DL/wrapper_mm_solver.m @ 247:ecce33192fcc tip
Added tag ver_2.1 for changeset cef4500b936f
author | luisf <luis.figueira@eecs.qmul.ac.uk> |
---|---|
date | Wed, 31 Oct 2012 12:24:44 +0000 |
parents | 4337e28183f1 |
children |
line wrap: on
line source
function [X , cost] = wrapper_mm_solver(b, A, param) %% SMALL wrapper for Majorization Minimization toolbox solver % % Function gets as input % b - measurement vector % A - dictionary % param - structure containing additional parameters. These are: % - initcoeff Initial guess for the coefficients % (optional) % - to 1/(step size). It is larger than spectral norm % of dictionary A (default is 0.1+(svds(A,1))^2) % - lambda Lagrangian multiplier. Regulates shrinkage % (default is 0.4) % - iternum Inner-loop maximum iteration number % (default is 1000) % - epsilon Stopping criterion for iterative softthresholding % (default is 1e-7) % - map Debiasing. 0 = No, 1 = Yes (default is 0) % % Output: % x - sparse solution % cost - Objective cost % % Centre for Digital Music, Queen Mary, University of London. % This file copyright 2011 Ivan Damnjanovic. % % This program is free software; you can redistribute it and/or % modify it under the terms of the GNU General Public License as % published by the Free Software Foundation; either version 2 of the % License, or (at your option) any later version. See the file % COPYING included with this distribution for more information. % %% % Initial guess for the coefficients if (isfield(param, 'initcoeff')) initX = param.initcoeff; else initX = zeros(size(A,2),size(b,2)); end % to - 1/(step size) . It is larger than spectral norm of dictionary A if isfield(param, 'to') to = param.to; else to = .1+(svds(A,1))^2; end % lambda - Lagrangian multiplier. (regulates shrinkage) if isfield(param, 'lambda') lambda = param.lambda; else lambda = 2*.2; end % Inner-loop maximum iteration number. if isfield(param, 'iternum') maxIT = param.iternum; else maxIT = 1000; end % Stopping criterion for iterative softthresholding if isfield(param, 'epsilon') epsilon = param.epsilon; else epsilon = 1e-7; end % Debiasing. 0 = No, 1 = Yes if isfield(param, 'map') map = param.map; else map = 0; end [X, cost] = mm1(A,b,initX,to,lambda,maxIT,epsilon,map); cost end