Mercurial > hg > smallbox
diff util/SMALL_AudioDeNoiseResult.m @ 8:33850553b702
(none)
author | idamnjanovic |
---|---|
date | Mon, 22 Mar 2010 10:56:54 +0000 |
parents | |
children | fc395272d53e |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/util/SMALL_AudioDeNoiseResult.m Mon Mar 22 10:56:54 2010 +0000 @@ -0,0 +1,36 @@ +function SMALL_AudioDeNoiseResult(SMALL) + +fMain=figure('Name', sprintf('File %s (training set size- %d, sigma - %d)',SMALL.Problem.name, SMALL.Problem.n, SMALL.Problem.sigma)); +m=size(SMALL.solver,2); +maxval=SMALL.Problem.maxval; +au=SMALL.Problem.Original; +aunoise=SMALL.Problem.Noisy; + +subplot(2, m, 1); plot(au/maxval); +title('Original audio'); + +subplot(2,m,2); plot(aunoise/maxval); +title(sprintf('Noisy audio, PSNR = %.2fdB', 20*log10(maxval * sqrt(numel(au)) / norm(au(:)-aunoise(:))) )); + +for i=1:m + params=SMALL.solver(i).param; + sWav=subplot(2, m, m+i, 'Parent', fMain); plot(SMALL.solver(i).reconstructed.Image/maxval, 'Parent', sWav); + title(sprintf('%s Denoised audio, PSNR: %.2fdB', SMALL.DL(i).name, SMALL.solver(i).reconstructed.psnr),'Parent', sWav ); + if strcmpi(SMALL.DL(i).name,'ksvds') + D = kron(SMALL.Problem.basedict{2},SMALL.Problem.basedict{1})*SMALL.DL(i).D; + else + D = SMALL.DL(i).D; + end + figure('Name', sprintf('%s dictionary in %.2f s', SMALL.DL(i).name, SMALL.DL(i).time)); + imshow(D*255); +% n= size(D,2); +% sqrtn=round(sqrt(size(D,2))); +% for j=1:n +% subplot(sqrtn,sqrtn,j); plot(D(:,j)); +% end +% dictimg = showdict(D,[params.blocksize 1],round(sqrt(size(D,2))),round(sqrt(size(D,2))),'lines','highcontrast'); +% +% subplot(2,m,m+i);imshow(imresize(dictimg,2,'nearest')); +% title(sprintf('%s dictionary in %.2f s', SMALL.DL(i-1).name, SMALL.DL(i-1).time)); + +end \ No newline at end of file