Mercurial > hg > smallbox
view util/SMALL_AudioDeNoiseResult.m @ 8:33850553b702
(none)
author | idamnjanovic |
---|---|
date | Mon, 22 Mar 2010 10:56:54 +0000 |
parents | |
children | fc395272d53e |
line wrap: on
line source
function SMALL_AudioDeNoiseResult(SMALL) fMain=figure('Name', sprintf('File %s (training set size- %d, sigma - %d)',SMALL.Problem.name, SMALL.Problem.n, SMALL.Problem.sigma)); m=size(SMALL.solver,2); maxval=SMALL.Problem.maxval; au=SMALL.Problem.Original; aunoise=SMALL.Problem.Noisy; subplot(2, m, 1); plot(au/maxval); title('Original audio'); subplot(2,m,2); plot(aunoise/maxval); title(sprintf('Noisy audio, PSNR = %.2fdB', 20*log10(maxval * sqrt(numel(au)) / norm(au(:)-aunoise(:))) )); for i=1:m params=SMALL.solver(i).param; sWav=subplot(2, m, m+i, 'Parent', fMain); plot(SMALL.solver(i).reconstructed.Image/maxval, 'Parent', sWav); title(sprintf('%s Denoised audio, PSNR: %.2fdB', SMALL.DL(i).name, SMALL.solver(i).reconstructed.psnr),'Parent', sWav ); if strcmpi(SMALL.DL(i).name,'ksvds') D = kron(SMALL.Problem.basedict{2},SMALL.Problem.basedict{1})*SMALL.DL(i).D; else D = SMALL.DL(i).D; end figure('Name', sprintf('%s dictionary in %.2f s', SMALL.DL(i).name, SMALL.DL(i).time)); imshow(D*255); % n= size(D,2); % sqrtn=round(sqrt(size(D,2))); % for j=1:n % subplot(sqrtn,sqrtn,j); plot(D(:,j)); % end % dictimg = showdict(D,[params.blocksize 1],round(sqrt(size(D,2))),round(sqrt(size(D,2))),'lines','highcontrast'); % % subplot(2,m,m+i);imshow(imresize(dictimg,2,'nearest')); % title(sprintf('%s dictionary in %.2f s', SMALL.DL(i-1).name, SMALL.DL(i-1).time)); end