comparison examples/MajorizationMinimization tests/SMALL_ImgDenoise_DL_test_KSVDvsMajorizationMinimization.m @ 164:4205744092e6 release_1.9

Merge from branch "ivand_dev"
author Ivan Damnjanovic lnx <ivan.damnjanovic@eecs.qmul.ac.uk>
date Wed, 07 Sep 2011 14:17:30 +0100
parents f42aa8bcb82f
children 9c418bea7f6a
comparison
equal deleted inserted replaced
151:af5abc34a5e1 164:4205744092e6
1 %% Dictionary Learning for Image Denoising - KSVD vs Recursive Least Squares
2 %
3 % This file contains an example of how SMALLbox can be used to test different
4 % dictionary learning techniques in Image Denoising problem.
5 % It calls generateImageDenoiseProblem that will let you to choose image,
6 % add noise and use noisy image to generate training set for dictionary
7 % learning.
8 % Two dictionary learning techniques were compared:
9 %
10 % - KSVD - M. Elad, R. Rubinstein, and M. Zibulevsky, "Efficient
11 % Implementation of the K-SVD Algorithm using Batch Orthogonal
12 % Matching Pursuit", Technical Report - CS, Technion, April 2008.
13 %
14 % - MMDL - M. Yaghoobi, T. Blumensath and M. Davies, "Dictionary Learning
15 % for Sparse Approximations with the Majorization Method", IEEE
16 % Trans. on Signal Processing, Vol. 57, No. 6, pp 2178-2191, 2009.
17
18
19 % Centre for Digital Music, Queen Mary, University of London.
20 % This file copyright 2011 Ivan Damnjanovic.
21 %
22 % This program is free software; you can redistribute it and/or
23 % modify it under the terms of the GNU General Public License as
24 % published by the Free Software Foundation; either version 2 of the
25 % License, or (at your option) any later version. See the file
26 % COPYING included with this distribution for more information.
27 %
28 %%
29
30
31
32 % If you want to load the image outside of generateImageDenoiseProblem
33 % function uncomment following lines. This can be useful if you want to
34 % denoise more then one image for example.
35 % Here we are loading test_image.mat that contains structure with 5 images : lena,
36 % barbara,boat, house and peppers.
37 clear;
38 TMPpath=pwd;
39 FS=filesep;
40 [pathstr1, name, ext, versn] = fileparts(which('SMALLboxSetup.m'));
41 cd([pathstr1,FS,'data',FS,'images']);
42 load('test_image.mat');
43 cd(TMPpath);
44
45 % Deffining the noise levels that we want to test
46
47 noise_level=[10 20 25 50 100];
48
49 % Here we loop through different noise levels and images
50
51 for noise_ind=2:2
52 for im_num=1:1
53
54 % Defining Image Denoising Problem as Dictionary Learning
55 % Problem. As an input we set the number of training patches.
56
57 SMALL.Problem = generateImageDenoiseProblem(test_image(im_num).i, 40000, '',256, noise_level(noise_ind));
58 SMALL.Problem.name=int2str(im_num);
59
60 Edata=sqrt(prod(SMALL.Problem.blocksize)) * SMALL.Problem.sigma * SMALL.Problem.gain;
61 maxatoms = floor(prod(SMALL.Problem.blocksize)/2);
62
63 % results structure is to store all results
64
65 results(noise_ind,im_num).noisy_psnr=SMALL.Problem.noisy_psnr;
66
67 %%
68 % Use KSVD Dictionary Learning Algorithm to Learn overcomplete dictionary
69
70 % Initialising Dictionary structure
71 % Setting Dictionary structure fields (toolbox, name, param, D and time)
72 % to zero values
73
74 SMALL.DL(1)=SMALL_init_DL();
75
76 % Defining the parameters needed for dictionary learning
77
78 SMALL.DL(1).toolbox = 'KSVD';
79 SMALL.DL(1).name = 'ksvd';
80
81 % Defining the parameters for KSVD
82 % In this example we are learning 256 atoms in 20 iterations, so that
83 % every patch in the training set can be represented with target error in
84 % L2-norm (Edata)
85 % Type help ksvd in MATLAB prompt for more options.
86
87
88 SMALL.DL(1).param=struct(...
89 'Edata', Edata,...
90 'initdict', SMALL.Problem.initdict,...
91 'dictsize', SMALL.Problem.p,...
92 'exact', 1, ...
93 'iternum', 20,...
94 'memusage', 'high');
95
96 % Learn the dictionary
97
98 SMALL.DL(1) = SMALL_learn(SMALL.Problem, SMALL.DL(1));
99
100 % Set SMALL.Problem.A dictionary
101 % (backward compatiblity with SPARCO: solver structure communicate
102 % only with Problem structure, ie no direct communication between DL and
103 % solver structures)
104
105 SMALL.Problem.A = SMALL.DL(1).D;
106 SMALL.Problem.reconstruct = @(x) ImageDenoise_reconstruct(x, SMALL.Problem);
107
108 %%
109 % Initialising solver structure
110 % Setting solver structure fields (toolbox, name, param, solution,
111 % reconstructed and time) to zero values
112
113 SMALL.solver(1)=SMALL_init_solver;
114
115 % Defining the parameters needed for image denoising
116
117 SMALL.solver(1).toolbox='ompbox';
118 SMALL.solver(1).name='omp2';
119 SMALL.solver(1).param=struct(...
120 'epsilon',Edata,...
121 'maxatoms', maxatoms);
122
123 % Denoising the image - find the sparse solution in the learned
124 % dictionary for all patches in the image and the end it uses
125 % reconstruction function to reconstruct the patches and put them into a
126 % denoised image
127
128 SMALL.solver(1)=SMALL_solve(SMALL.Problem, SMALL.solver(1));
129
130 % Show PSNR after reconstruction
131
132 SMALL.solver(1).reconstructed.psnr
133
134 %%
135 % For comparison purposes we will denoise image with Majorization
136 % Minimization method
137 %
138
139 % Initialising solver structure
140 % Setting solver structure fields (toolbox, name, param, solution,
141 % reconstructed and time) to zero values
142
143 SMALL.solver(2)=SMALL_init_solver;
144
145 % Defining the parameters needed for image denoising
146
147 SMALL.solver(2).toolbox='ompbox';
148 SMALL.solver(2).name='omp2';
149 SMALL.solver(2).param=struct(...
150 'epsilon',Edata,...
151 'maxatoms', maxatoms);
152
153 % Initialising Dictionary structure
154 % Setting Dictionary structure fields (toolbox, name, param, D and time)
155 % to zero values
156
157 SMALL.DL(2)=SMALL_init_DL('MMbox', 'MM_cn', '', 1);
158
159
160 % Defining the parameters for MOD
161 % In this example we are learning 256 atoms in 20 iterations, so that
162 % every patch in the training set can be represented with target error in
163 % L2-norm (EData)
164 % Type help ksvd in MATLAB prompt for more options.
165
166
167 SMALL.DL(2).param=struct(...
168 'solver', SMALL.solver(2),...
169 'initdict', SMALL.Problem.initdict,...
170 'dictsize', SMALL.Problem.p,...
171 'iternum', 20,...
172 'iterDictUpdate', 1000,...
173 'epsDictUpdate', 1e-7,...
174 'cvset',0,...
175 'show_dict', 0);
176
177 % Learn the dictionary
178
179 SMALL.DL(2) = SMALL_learn(SMALL.Problem, SMALL.DL(2));
180
181 % Set SMALL.Problem.A dictionary
182 % (backward compatiblity with SPARCO: solver structure communicate
183 % only with Problem structure, ie no direct communication between DL and
184 % solver structures)
185
186 SMALL.Problem.A = SMALL.DL(2).D;
187 SMALL.Problem.reconstruct = @(x) ImageDenoise_reconstruct(x, SMALL.Problem);
188
189 % Denoising the image - find the sparse solution in the learned
190 % dictionary for all patches in the image and the end it uses
191 % reconstruction function to reconstruct the patches and put them into a
192 % denoised image
193
194 SMALL.solver(2)=SMALL_solve(SMALL.Problem, SMALL.solver(2));
195
196
197
198 % show results %
199
200 SMALL_ImgDeNoiseResult(SMALL);
201
202 results(noise_ind,im_num).psnr.ksvd=SMALL.solver(1).reconstructed.psnr;
203 results(noise_ind,im_num).psnr.odct=SMALL.solver(2).reconstructed.psnr;
204 results(noise_ind,im_num).vmrse.ksvd=SMALL.solver(1).reconstructed.vmrse;
205 results(noise_ind,im_num).vmrse.odct=SMALL.solver(2).reconstructed.vmrse;
206 results(noise_ind,im_num).ssim.ksvd=SMALL.solver(1).reconstructed.ssim;
207 results(noise_ind,im_num).ssim.odct=SMALL.solver(2).reconstructed.ssim;
208
209
210 results(noise_ind,im_num).time.ksvd=SMALL.solver(1).time+SMALL.DL(1).time;
211
212 %clear SMALL;
213 end
214 end
215 % save results.mat results